
Dynamic and Adaptive Updates of Non-Quiescent
Subsystems in Commodity Operating System Kernels

Kristis Makris
Arizona State University

Tempe, AZ
USA

kristis.makris@asu.edu

Kyung Dong Ryu
IBM T.J. Watson Research Center

Yorktown Heights, NY
USA

kryu@us.ibm.com

ABSTRACT
Continuously running systems require kernel software up-
dates applied to them without downtime. Facilitating fast
reboots, or delaying an update may not be a suitable solu-
tion in many environments, especially in pay-per-use high-
performance computing clusters and mission critical sys-
tems. Such systems will not reap the benefits of new kernel
features, and will continue to operate with kernel security
holes unpatched, at least until the next scheduled mainte-
nance downtime. To address these problems we developed
an on-the-fly kernel updating system that enables commod-
ity operating systems to gain adaptive and mutative capa-
bilities without kernel recompilation or reboot. Our system,
DynAMOS, employs a novel and efficient dynamic code in-
strumentation technique termed adaptive function cloning.
Execution flow can be switched adaptively among multiple
editions of functions, possibly concurrently running. This
approach becomes the foundation for dynamic replacement
of non-quiescent kernel subsystems when the timeliness of an
update depends on synchronization of multiple kernel paths.
We illustrate our experience by dynamically updating core
subsystems of the Linux kernel.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.4.6 [Operating Systems]: Security
and Protection

General Terms
Algorithms, Design, Reliability, Security

Keywords
dynamic software updates, dynamic instrumentation, func-
tion cloning, adaptive operating system, DynAMOS

EuroSys’07, March 21–23, 2007, Lisboa, Portugal.

1. INTRODUCTION
Many systems are required to be in service continuously, but
operating system kernel updates cannot be applied to them
without downtime. Unless the provided service is disrupted,
kernel security holes remain unpatched, and the running ap-
plications miss opportunities for increased performance by
applying specialized kernel extensions.

For example, downtime in a pay-per-use time-sharing super-
computing cluster would directly translate to revenue loss.
When long-lived parallel tasks are running, fast reboots are
not an option since they would disrupt the applications. Live
migration of processes with large data sets may result in un-
acceptable disruption of service until migration completes.
Virtualization software cannot help in concurrently running
multiple editions of a specialized kernel subsystem in the
context of different processes in the same operating system.

Applications could benefit from a dynamically updateable
kernel. For example, adaptive memory paging for efficient
gang scheduling in clusters [20] can reduce the job-switching
time by 90%. Unobtrusive fine-grain cycle stealing in dis-
tributed systems [19] can improve the throughput of foreign
jobs by 60%. These features require relatively simple ker-
nel patches, but require a kernel recompilation to apply.
Dynamic kernel updates is a promising general solution for
taking advantage of new features and security fixes without
delay, at least until the next scheduled maintenance time.

In support of dynamic kernel updates, two approaches pre-
vail: (a) design of adaptable or hot-swappable operating
systems from scratch, and (b) dynamic code interposition.
Applying the principles of special operating systems facili-
tating updates, such as K42 [1], VINO [21] and Synthetix [4],
in commodity operating systems is a complex and costly
task. It requires significant changes in the way applications
and the operating system itself are built. Updating systems
based on dynamic code instrumentation, like KernInst [24],
and GILK [18], are restricted to code interposition at the
basic block level. Along with systems that intercept func-
tions, like Detours [9] and Vulcan [22], they do not address
updates when state tracking or synchronized updates are re-
quired. Additionally, these systems do not support adaptive
updates for varied system workloads.

DynAMOS is designed to unobtrusively apply dynamic ker-

nel updates, without kernel source code modifications or sys-
tem restart in commodity operating systems. It can safely
update continuously running kernel components, can safely
reverse its updates, and does not rely on the compiler. It is
founded on a new code instrumentation technique, termed
adaptive function cloning. This technique applies updates at
a function level, instead of a basic block. It is general enough
to patch both fixed (e.g. PowerPC) and variable (e.g. i386)
instruction-length architectures. Our contributions are:

• Updates of non-quiescent subsystems. In a com-
modity operating system, we accomplish substantial
updates of core kernel subsystems that never quiesce,
such as the scheduler and kernel threads.

• Datatype updates. A technique for updating com-
pact datatype definitions is presented. Addition of new
fields in a datatype is supported using a shadow data
structure containing the fields.

• Safe reversibility. We present a methodology for
quiescence detection. Updated functions can be re-
moved with the guarantee that they are not used by
the stack or program counter of any process.

• Adaptability. Execution can be switched adaptively
between multiple, possibly concurrently running, func-
tion editions. To our knowledge, this is the first dy-
namically applied, adaptive kernel updating system.

• Synchronized updates. A multi-phase updating al-
gorithm for replacement of complete kernel subsystems
is presented. Notably, the cases where the timeliness
of an update depends on synchronization of multiple
kernel paths.

We assume new versions of updates are semantically correct
and bug free. Kernel updates are presently manually pre-
pared by a programmer using standard tools like gcc and
make. The user does not need to decide when it is safe to
initiate an update. Our system guarantees that the process
of applying the updates is reliable. Future work will au-
tomate the preparation of kernel updates given as input a
patch against the currently running version of a kernel.

Section 2 classifies the types of dynamic kernel updates. Sec-
tion 3 outlines our contributions in enabling kernel updates
and Section 4 presents our methodology. Section 5 illus-
trates applications of DynAMOS in dynamically updating
the Linux kernel, and Section 6 reports the system perfor-
mance. Section 7 discusses related and future work, and
Section 8 concludes this paper.

2. CLASSIFICATION OF DYNAMIC
UPDATES

In this section we examine closely the characteristics of ker-
nel updates and the requirements to safely to apply them at
runtime. As we will show, the degree of difficulty in apply-
ing updates depends on the characteristics of the updates.
By discovering the requirements for safe applications of var-
ious types of kernel updates, we were able to identify the
necessary features of a dynamic kernel updating system.

2.1 Characteristics Of Kernel Updates
We first list three important characteristics that a kernel
update may or may not share.

Quiescence. Some functions in a kernel may never exit.
One example is the scheduler of an operating system which
executes in the context of processes. A process that sleeps
is blocked midstream the scheduler. In essence, the kernel
scheduler never quiesces. It is never completely inactive. It
is important to clarify the definition of quiescence. Previ-
ous work [2, 17] defined quiescence as a resource becoming
completely idle. No parts of the resource were in use, either
by sleeping processes or partially-completed transactions.

Safe update points. A point could exist in time where
an update could be applied safely. However, a safe update
point does not imply quiescence. For example, the page
swapper kernel thread kswapd in Linux never quiesces (it
never exits). But there is a safe point at which it can be
updated, and that’s when the thread goes to sleep. It is a
point where the resource is temporarily inactive and can be
safely updated.

Userspace, external, and internal requirements. Some
updates could change the agreement between kernel and
userspace. For example, modifying the behavior of a system
call, or applying a security fix could break existing appli-
cations that rely on the older behavior and presence of a
defect. Thus some modifications could change the userspace
requirements. Other updates could change the API a kernel
subsystem publishes to other kernel subsystems that need
its services. For example, altering kernel function signa-
tures or updating the data types of the supplied arguments.
Such modifications would change the external requirements
of a kernel subsystem. Finally, some updates could change
the internal implementation of a kernel subsystem without
affecting other customers of the subsystem’s services. For
example, the internal implementation of pipefs in Linux
could be modified to use a four page copy buffer, instead of
a one page buffer. Members of the subsystem, like pipe read

and pipe write, should be updated accordingly to read and
write up to four pages respectively. The internal require-
ments of the subsystem are changed without side-effects in
the rest of the kernel.

2.2 Requirements For Safe Updating
There are two important features that a kernel update may
or may not require to apply safe updates.

State tracking and state transfer. For some types of
updates it is necessary to monitor multiple instances of a
resource and update only specific ones. For example, we
could choose to adaptively enlarge the internal pipefs copy-
buffer when large amounts of data are passed through it.
The update should be applied only under the context of the
two processes communicating large data through the pipe,
and requires tracking the state of open pipes. In other cases,
data may need to be migrated from one data structure type
(e.g. array) to another (e.g. hash table). The state of the
resource will need to be transferred.

Synchronized updates. Presence of safe update points
in source code does not guarantee that an update, if ap-

plied atomically, will be safe. In some cases an approach
that synchronizes the timeliness of the update must be fol-
lowed. For example, updating data only after acquiring a
semaphore or lock. The update will not be atomic, but will
rely on synchronization with other kernel paths. Operat-
ing system kernels are sprinkled with such synchronization
primitives.

2.3 Types Of Kernel Updates
We now classify kernel updates according to the complexity
of applying the update. Table 1 categorizes each update type
and summarizes its update characteristics and requirements.
Described in more detail they are:

1. Updating a variable value. This update type changes
only variable values. For example, setting a new max-
imum number of open files limit in a read-only global
variable. Another classification is updating the access
time of a specific inode (does not require synchroniza-
tion), which must be done in the context of the inode,
thus requiring additional state tracking.

2. Updating a variable value with synchronized
access. This update type changes the value of a vari-
able requiring exclusive access. For example, updating
the owner (uid) of an inode requires acquisition of the
inode semaphore, including state tracking.

3. Adding a new variable used by a single func-
tion. This update type updates a function to track a
new global variable value. This may only change the
internal implementation of the function, and does not
require a safe update point. One example is a global
variable that counts the total number of system calls
dispatched. A variation requiring state tracking would
be to count the total number of system calls dispatched
by a specific process.

4. Adding a new variable used by a function group.
This update type updates a group of functions to track
the new variable. To guarantee correctness, the group
must be updated in a synchronized manner. For exam-
ple, a global variable that tracks the number of pro-
cesses that are running a specific system call at any
time, either actively executing or blocking. Again, a
variation requiring state tracking would be counting
invocations of a system call by a specific process. In
both cases, a synchronization primitive needs to be
added where a safe update point was initially missing.

5. Adding a new field in a data structure. This
update type extends a data structure to provide an-
other field. An example is adding a pointer to a list of
processes that use an inode in the inode data type def-
inition. Access to data structures is normally guarded
by a synchronization primitive. Data structures can
be extended by: (a) transferring their state to a data
structure that includes this field, and updating all func-
tions that use the old data type, or (b) maintaining a
shadow data structure that holds the value of this field
alone, and updating the affected functions to track
its value. The latter approach does not require state
transfer.

6. Updating a quiescent single function. This up-
date type corrects a defect of a single function which
has no side-effects in other parts of the kernel, such as
security fixes. One example is modifying open namei,
which quiesces, in Linux to disallow following symbolic
links not owned by the current user.

7. Updating a non-quiescent single function. This
update type also corrects a single function which has
no side-effects in other parts of the kernel. For exam-
ple, modifying the Linux scheduler (schedule), which
never quiesces, to begin using an alternate scheduling
policy.

8. Updating interrupt handlers. This update type
involves changing low-level interrupt handlers. Inter-
rupt handlers are treated as functions known to qui-
esce. They can be forced to quiesce by disabling pro-
cessor interrupts.

9. Updating a function group. This update type cor-
rects a defect of a single function, but may introduce
side-effects in other parts of the kernel. These side-
effects stem from more possibilities allowed in the con-
trol flow. For example, returning a value not currently
handled by the function’s callers. Such a function
group must be updated synchronously, and could pos-
sibly quiesce. For a non-quiescent group, a methodol-
ogy for updating in a synchronous manner is needed.

10. Updating a function signature. This update type
must first update all callers of a function to use the new
function signature. This does not necessarily require a
synchronous update. An updating strategy would be
to first load an inactive version of the function with
the updated signature, and then update the function’s
callers to use the new signature.

11. Updating a quiescent subsystem. This update
type updates a function group, possibly requiring data
structure transformations. There exist identifiable time
periods when the subsystem is inactive. Examples in-
clude the pipefs implementation and filesystems in
general.

12. Updating a non-quiescent subsystem. This up-
date type updates a function group, possibly requiring
data structure transformations, when the subsystem
never quiesces. One example would be converting the
O(n) Linux 2.4 scheduler which uses a single process
queue into an O(1) Linux 2.6 implementation which
uses two process queues.

Our classification in Table 1 shows that synchronized up-
dates are not mandated in nearly half of the cases analyzed.
Previous work has not adequately examined the possibilities
of this observation. Functions could be updated while they
are actively running. There is no need to guarantee an up-
date is already in effect when a synchronized updated is not
required. Eventually, the update will become active when
the function is executed again.

Characteristics Requirements

Update Quiesces Changes Changes Changes Safe State Synchronized State

type userspace external internal update tracking update transfer

reqs reqs reqs point

1 variable value Yes Possibly No No No Possibly No No

2 synchronized Yes Possibly No No Yes Possibly Yes No

variable value

3 new variable, Yes No No Yes No Possibly No No

single function

4 new variable, Yes No No Yes No Possibly Yes No

function group

5a new field, Yes No No Yes Yes No Yes Yes

transfer

5b new field, Yes No No Yes Yes No Yes No

shadow

6 quiescent Yes Possibly No Yes No No No No

single function

7 non-quiescent No Possibly No Yes No No No No

single function

8 interrupt handler Yes No No Yes No No No No

9 function group Possibly Possibly Yes No Possibly No Yes No

10 function signature Possibly Possibly Yes Yes Possibly No Possibly No

11 quiescent Yes Possibly No Yes Possibly Possibly Yes Possibly

subsystem

12 non-quiescent No Possibly No Yes Possibly Possibly Yes Possibly

subsystem

Table 1: Analysis of dynamic update characteristics and requirements for each updating type.
Nearly half of the cases do not require a safe update point. Updates requiring state transfer (5a, 11, 12), especially without having a
safe update point (11, 12), are the most challenging to apply.

3. ENABLING DYNAMIC UPDATES
Enabling dynamic kernel updates requires several features.
In this section we describe how DynAMOS supports those
required features.

Dynamic execution flow redirection. We must devise
a mechanism of diverting execution flow of a kernel while
running. Since the approach must be completely dynamic,
annotating the kernel source a priori or modifying the com-
piler is not acceptable.

Our system employs function indirection based on the well-
studied technique of dynamic code instrumentation. It can
be applied without kernel recompilation or reboot.

Quiescence detection. In many cases (e.g. Table 1: cases
4, 9, 10, 11, 12) function groups may need to be updated
atomically. It must first be guaranteed that the function
group is completely quiescent. No function can be idle on
the stack. K42[2] required kernel threads to be short-lived
and non-blocking, hence could easily detect quiescence. A
quiescent subsystem was one with no kernel threads run-
ning in its context. Our system is applied in commodity
kernels that have not been specially structured to facilitate
quiescence, and will need a methodology to detect it.

Our execution flow redirection mechanism detects quiescent
functions by introducing usage counters. For all functions
that will be updated, entrance and exit to the function is
monitored to detect quiescence. However, usage counters are
not always sufficient. Some functions, like do exit in Linux,

never return. An exit use counter would never be decre-
mented, and quiescence would never be detected. Functions
that never return lack a ret instruction at the end. For
those functions we apply a new methodology of examining
the stack. For all processes in the system, a copy of their
stack pointer (%esp) is decremented until its value reaches
the bottom of the stack. If the item pointed to by the stack
pointer (the top-most 4-byte value), when interpreted as a
pointer, points at an updated function the check fails. If
function arguments pushed on the stack coincidentally eval-
uate to such a pointer address we conservatively assume the
function is non-quiescent. This stack walk-through approach
does not require a kernel compiled specially. For example,
it will work for kernels compiled without frame pointers.

Adaptive updates. State-tracking (e.g. Table 1: cases
1, 2, 3, 4, 11, 12) requires adaptive logic that will apply
an update in a specific context. For example, execute the
original version of a function for one process, but an updated
version for another process.

Our novel adaptive function cloning technique enables ex-
ecution to be dynamically switched between multiple func-
tion editions. A user-provided adaptation handler allows the
kernel to continuously and autonomously determine the ap-
propriate edition to run per context. For example, updates
can be applied adaptively based on system workload.

Synchronized updates. Some function groups rarely or
never quiesce, hence cannot be atomically updated. One
such group is the pipefs subsystem which follows a producer-

pipe_read_v1() pipe_read_v2() pipe_read_v3() pipe_read_adaptation_handler()
{ { { {

... if (phase == 3)
acquire Sem acquire Sem acquire Sem activate pipe_read_v3
while (State_S1) { while (State_S1) { while (State_S1_new) { else

... activate pipe_read_v2
release Sem release Sem release Sem }
sleep sleep sleep
acquire Sem acquire Sem acquire Sem
... if (must_update) { ...

} phase = 3 }
... goto new ...
read data as v_old } read data as v_new
release Sem ... release Sem
return } return

} ... }
read data as v_old
release Sem
return

while (State_S1_new) {
...
release Sem
sleep
acquire Sem

new: ...
}
...
read data as v_new
release Sem
return

}

Figure 2: Function editions used in the three phases of a synchronized function group update.
pipe read v1 shows the original, unmodified implementation. pipe read v2 serves as an intermediate stage where the function is aware it
might have been updated after a process awakes. In that case, it executes an updated inline version beginning from label new. pipe read v3
runs an optimized version of pipe read v2 after the update has been performed. pipe read adaptation handler dynamically selects
which version of pipe read should be executed. pipe write is implemented in similar fashion.

pipe_read() pipe_write()
{ {

... ...

acquire Sem acquire Sem
while (State_S1) { while (State_S2) {

... ...
release Sem release Sem

L1: sleep L2: sleep
acquire Sem acquire Sem
... ...

} }
... ...

read from data buffer write in data buffer
release Sem release Sem

} }

Figure 1: Pseudocode of a non-quiescent function
group which is synchronized with semaphores.
The consumer (pipe read) may continuously sleep inside the while
loop at L1, waiting for more data to arrive (State S1). Respectively,
the producer (pipe write) may block inside the while loop at L2, wait-
ing for the data buffer to be emptied (State S2).

consumer model, as shown in Figure 1. While the producer
function (pipe write) may be quiescent, the consumer func-
tion (pipe read) may be active, and vice versa. For exam-
ple, a process may be blocked on a pipe read waiting for
more data to arrive. In essence, the consumer process will
be sleeping on label L1. The producer process may be com-

pletely inactive. Together they form a non-quiescent func-
tion group.

If state must be transferred between two versions of the sub-
system, updating the non-quiescent consumer can lead to an
inconsistent state. Assume both the producer and consumer
are updated when the consumer is asleep at L1. Updates are
applied at the function entrypoint level. After the update,
the consumer may awake at L1 to execute its original ver-
sion, which was already executing on the stack, instead of
the updated version. It will execute stale code that may
not process the new state as expected. Attempting to ac-
quire a synchronization semaphore or lock is the reason some
functions of a group may block indefinitely. Non-quiescent
function groups can be identified by their utilization of syn-
chronization primitives.

We formulated an algorithm to allow synchronized updates
in non-quiescent subsystems. Processes that went to sleep
executing the original version of a function can now awake
executing the newer version. The updates are applied in
three phases. During the first phase, we construct two new
versions of the group functions, as shown in Figure 2. The
second version (pipe read v2) is essentially a duplicate of
the original version (pipe read v1). Additionally, it con-
tains an inline copy of the newer version at the end. The
second version is the first to be applied. It can be applied

at any time and does not require a safe update point, since
it is semantically equal to the first version. The second
phase begins when the usage counters indicate the second
version is being used. This is determined by the frame-
work and does not require user intervention. Every time
the consumer awakes, we check if it is desired to perform
the update. This check can be defined separately by the
user by raising the must update flag. When this flag is
raised, the third phase begins. Execution jumps to the in-
line newer version which could be consuming data differ-
ently. Newer invocations of the consumer are directed to
the final version (pipe read v3) which no longer requires
the updating check. According to the phase of the update,
pipe read adaptation handler dynamically selects which
version of pipe read to activate for execution.

Existing dynamic instrumentation systems have not explored
synchronized updates of function groups. Non-quiescent
subsystems founded on other synchronization models could
also be accommodated with our algorithm. The second ver-
sion of the update is immune to compiler side-effects, since
it is verified to be semantically correct at the source code
level.

Datatype updates. Existing work by Neamtiu, Hicks et
al [17] recompiles userspace programs and introduces suffi-
cient room in datatypes to update them with new fields in
the future. In an unmodified commodity kernel, datatype
definitions are often compact with no room for new fields.

We developed a new technique using shadow data structures
to store the new datatype fields. On variable instantiation
a new shadow variable is created. The memory address of
the variable is mapped into its shadow using a hash table.
When the new datatype is freed, its shadow is also freed.
A benefit of this dynamic technique is that only functions
which will use the new field need to be updated. Functions
that use the old datatype can remain unmodified.

Long-lived variables may have been instantiated before up-
dates that utilize shadow data structures were applied. These
variables will not find valid shadow mappings when they are
used. Access to new fields must be written in an idempotent
manner that will not use the new fields if a shadow is miss-
ing. A tool that produces datatype updates automatically
could enforce this rule.

Updates of kernel threads. Kernel threads are com-
monly implemented as long-running or infinite loops that
are awakened by other parts of the kernel to act. They are
entered only once, and never exit. Previous compile-time
approaches [17] based on function indirection identified such
loops. They extracted the loop core into a separate function
which is called on each iteration of the loop. Hence, the
function could be updated at any time. In contrast, our
system must be completely dynamic.

We observed that all kernel threads call a common kernel
routine, like interruptible sleep on in Linux, to go to
sleep. To update threads, we first dynamically introduce and
activate interruptible sleep on v2. This updated version
contains logic that will force the thread to transfer possible
state and exit. We awake the thread once to give it a chance

insmod

kernel

cloned
function image

/dev/dynamos
interface

load/unload
functionality

userspace

gcc, ld, vmlinux,
kernel source,

disassembler

control−tool

object
file

new version
of a function

user scripts,

trampoline
template

template

handler
redirection

customization
routines

version manager

DynAMOS framework

Figure 3: DynAMOS architecture diagram.
New functions are prepared in userspace, loaded in the kernel
and registered with a version manager. Template trampoline and
redirection handler instruments are customized and applied to
the new functions to divert execution flow.

to call interruptible sleep on v2. After the thread exits,
a new version of the thread is launched. Respectively, to
disable the new version of the thread we save its state, force
it to exit, and re-launch the original thread.

Some compilers may inline this sleeping routine in the thread.
The kernel scheduler must always be a separate function
that is not inlined. The scheduler could be updated instead
to apply this logic.

4. IMPLEMENTATION
In this section we outline the details of our implementation.
We present our unique execution flow redirection technique
and the issues that surround it.

4.1 Execution Flow Redirection
DynAMOS is developed in a mix of C and assembly code
using the GNU toolchain for a uniprocessor Linux 2.2-2.6
kernel. It consists of a portable kernel component and a col-
lection of user-level tools to build updates and control the
kernel component, as depicted in Figure 3. Standard tools
such as the gcc compiler and ld linker are used in conjunc-
tion with the kernel source code to produce new versions
of kernel functions. The updates are currently manually
prepared. They are inserted in the operating system as a
loadable module and enabled with a command-line control
tool.

is 0xef4552a0

0xc011502c:
0xc0115031:
0xc0115033:
0xc0115034:

...

ef 45 52 a00xc18f3204:

address of handler

0xc011502c:
0xc0115032:
0xc0115034:

...

ff 25 04 32 8f c1 jmp *0xc18f3204

89 e5 mov %esp,%ebp

misinterpreted, invalid instructions

function image
after trampoline is added

before trampoline is added
original function image

b8 00 e0 ff ff mov $0xffffe000
21 e0 and %esp,%eax
55 push %ebp
89 e5 mov %esp,%ebp

schedule()

e0 55 loopne 0xc0115089

Figure 4: Trampoline code.
A 6-byte jmp overwrites the 5-byte mov instruction and part of
the subsequent and. The indirect target of the trampoline is the
address of the redirection handler.

Execution is redirected by installing a trampoline in the be-
ginning of the original kernel function. Figure 4 shows an
example of a trampoline installed in the schedule Linux
function in the i386 architecture. The 6-byte trampoline
overwrites the 5-byte mov instruction and part of the sub-
sequent and. The indirect target of the trampoline jmp

is the address of the redirection handler. It is stored at
0xc18f3204, and is the new memory address to which ex-
ecution flow will branch. Operating system kernels that
store their text segment in read-only pages would require
temporarily modifying the page permissions when chang-
ing the trampoline target address. Indirect addressing from
memory eliminates this overhead. The processor instruction
cache is also flushed to make the trampoline immediately
visible to the processor. Trampolines may only be installed
on function images that are larger than the 6-byte trampo-
line.

Figure 5 shows the complete mechanism used to divert ex-
ecution flow in the redirection handler. A trampoline is in-
stalled in the beginning of the original function v1. When
the function is called (1), execution branches to the exe-
cution flow redirection handler (2). The handler performs
pre-call bookkeeping operations (maintains use counters).
An additional adaptation handler dynamically selects the
active version of the function that should be executed based
on rules supplied by the user. Finally, execution jumps to
the active version of the function function v1 clone (3),
which is a clone of the original function. This clone is mod-
ified to branch back to the redirection handler (4), where
additional post-call bookkeeping is carried out. Execution
eventually returns to the original caller (5). Existing func-
tions (like function v1), are cloned by disassembling the
original machine code found in the range of memory oc-
cupied by the function, and then reassembling it into the
cloned copy (function v1 clone). When a user wants to
insert a new version of a function (like function v2), Dy-

...

...

original caller

function_v1

redirection handler

call function

trampoline

call

jmp

1

2
ret 5

−jump back to handler

...

− return to original caller
− restore state

− perform bookkeeping

− jump to active function
− restore state

− preserve state

− preserve state

− execute adaptation

jmp

3

...

−jump back to handler
jmp

jmp

4

− perform bookkeeping

handler

function_v2 function_v1_clone

function_v2_clone

Figure 5: Execution flow redirection mechanism.
A call to function v1 moves execution flow to the redirection han-
dler and reaches function v1 clone. The function jumps back to
the handler and returns to the original caller. An adaptation han-
dler can dynamically select which version of the function should
be executed among function v1 clone and function v2 clone.

nAMOS processes the new version (function v2 clone) in
the same fashion it makes a clone of an original function.

Relocated function clones are produced for two reasons. First,
the trampoline overwrites instructions in the original func-
tion image that could no longer be executed. And second,
the redirection handler must regain control for its post-call
bookkeeping (maintain use counters). To accomplish the
second goal, a function image must have all return instruc-
tions (ret) replaced with absolute jumps (jmp). In the i386
variable instruction-length architecture the size of the ret

(1 byte) and jmp (6 bytes) instructions differs. After return
instructions are replaced, the new clone may increase in size,
requiring special logic when relocating. All inbound relative
offsets (e.g. a jmp to the beginning of a loop) in the clone
have to be adjusted to point to their proper location in the
clone. Finally, all outbound relative offsets (e.g. a call to
kmalloc) need to be adjusted to point to their original tar-
gets (kmalloc). This is required because the clone occupies
a different memory address than the original function.

An alternative cloning approach investigated the possibil-
ity to introduce a new stack frame for the redirection code.
In this way the relocated clones could continue to use ret

without change. However, this approach would result in
the clones incorrectly accessing their parameters from the
stack, due to the extra stack frame. Another approach sug-
gested [5] to modify the return address on the stack to return
control to the redirection handler. This approach would rely
on the compiler ABI and require knowledge of each function
prototype.

To eliminate a locking bottleneck, a separate redirection
handler is instantiated for each function. It is also cloned
from a template implementation and customized to use val-
ues pertinent to the function (e.g. memory address of a use
counter variable). To preserve processor state, registers are
saved on the stack before and after calling the active version
of a function.

The adaptive function cloning technique provides a more
flexible approach of execution flow redirection geared to-
wards procedure updates and adaptive execution. The key
differences from similar dynamic instrumentation systems,
such as DynInst [8], KernInst [24], GILK [18], and De-
tours [9] are:

• Instrumentation code is not guarded by processor-state
preservation logic, which alters the stack. It is directly
invoked, and supplied function arguments are accessed
from the stack without modifications to the updated
versions.

• The kernel can continuously and autonomously deter-
mine the right time an update should occur, by exe-
cuting an adaptation handler.

• Basic blocks can be bypassed. Control flow graph
and register analysis can be inconclusive in code se-
quences that contain an indirect jump from a mem-
ory address. Runtime structural analysis cannot de-
termine whether the data following the jump are valid
instructions, dead code, or data, hence cannot guaran-
tee that such subsequent code could be bypassed. In
contrast, the starting and ending memory address of
a function image available in the linker symbol table
guarantee that a function can be safely modified in its
entirety.

• Instruments are applied at a higher, function level.
The expectation of existing systems that a kernel can
be intelligently and considerably modified at the in-
struction micro-level without access to source code can
be overly taxing on developers.

4.2 Other Issues
Function cloning raises several issues related to safely pro-
ducing and using cloned images.

Backwards branches. A function could contain backward
branches targeting the area occupied by the trampoline. A
check for such branches prior to function cloning ensures
that a possibly unsafe branch is avoided.

Sleeping processes. It is not possible for a process to block
midway through execution of code that would be overwrit-
ten by the trampoline. Processes in an operating system
block when they explicitly call the kernel scheduler. Fig-
ure 6(a) shows an example of a routine that immediately
calls the Linux scheduler on entry. When disassembled in
Figure 6(b), 6 bytes are dedicated to frame management
and another 5 bytes consumed by the call to the scheduler.
The total of 11 bytes is less than the 6 bytes needed by

void functionA()
{

schedule();
functionB();

}

(a) A routine that immediately blocks through a call to the
scheduler.

00000052 <functionA>:
52: 55 push %ebp

53: 89 e5 mov %esp,%ebp
55: 83 ec 08 sub $0x8,%esp
58: e8 fc ff ff ff call 59 <functionA+0x7>

5d: e8 fc ff ff ff call 5e <functionA+0xc>
6c: c9 leave

6d: c3 ret

(b) Disassembled output of the routine.

00000024 <functionA>:

24: e8 fc ff ff ff call 25 <functionA+0x1>
29: e8 fc ff ff ff call 2a <functionA+0x6>

33: e9 fc ff ff ff jmp 34 <function_D+0xb>

(c) Disassembled output of a highly optimized version of the routine
using the gcc arguments -Os (optimize for size) and

-fomit-frame-pointer (omit the frame pointer).

Figure 6: A process that immediately goes to sleep
will not block in trampoline code.
(a) shows an example of a routine that immediately sleeps. (b) dis-
assembles the routine. Stack management code from offsets 52 to 5c
(total of 11 bytes) consumes more bytes than the size of the tram-
poline (6 bytes). (c) disassembles a highly optimized version of the
routine. A trampoline that uses direct addressing (jmp <address>,
5 bytes) instead of indirect (jmp *<address>, 6 bytes) could still be
safely installed atop the 5-byte call.

the trampoline. Lets explore an extreme case in Figure 6(c)
where a routine is highly-optimized. The call instruction
consumes 5 bytes, and could still be updated by a 5 byte
trampoline that used direct addressing. In all three cases,
in a fixed instruction-length architecture (e.g. PowerPC)
the call to the scheduler is overwritten by the trampoline
as a single instruction and ensures safe instrumentation in
sleeping processes. Finally, local processor interrupts are
disabled during trampoline installation. This guarantees the
installation is safe from interrupt handlers.

Data-in-code. Linux uses the custom BUG macro to pro-
duce code raising an exception on a failed assertion. Fig-
ure 7 shows its definition in gcc inline assembly. handle BUG

handles the exception by extracting the line number and a
pointer to the file name containing the failed assertion. This
information is stored as data directly in code right after
the ud2 instruction that raises the exception. The reloca-
tion logic may be misled to interpret the data as outbound
branch instructions and refuse to update the function. Such
conservative handling of data-in-code cases do not compro-
mise correctness of the updating framework.

The switch to macro, which performs context switching,
presents a similar case in Figure 8. It stores the value of the
program counter (EIP) that a process will use in the future
when it receives the processor again. This is an absolute
memory address pointing to the original function image and
would break the redirection. DynAMOS inspects the orig-
inal functions and detects uses of literals that happen to

#define BUG() \
asm volatile("ud2\n" \

"\t.word %c0\n" \
"\t.long %c1\n" \
: : "i" (__LINE__), "i" (__FILE__))

Figure 7: Definition of BUG macro in Linux 2.4.
The line number and a pointer to the filename of a failed assertion
are stored as data in code, right after the ud2 instruction that raises
an exception.

#define switch_to(prev,next,last) do { \
asm volatile(... \

"movl $1f,%1\n\t" /* save EIP */ \
"pushl %4\n\t" \

"jmp __switch_to\n" \
"1:\t" \

"popl %%ebp\n\t" \
...);

(a) Definition of switch to macro in Linux 2.4. A process should
begin execution in the future from the label 1:.

0xc01127f1 movl $0xc0112806,0x274(%eax)

0xc01127fb pushl 0x274(%esi)
0xc0112801 jmp 0xc0107120 <__switch_to>

0xc0112806 pop %ebp

(b) Disassembled output showing an absolute memory address used
as data.

Figure 8: Linux switch to macro.
(a) Defines the switch to macro. (b) lists the matching assembly code
produced by gcc. The mov at 0xc01127f1 uses the absolute memory
address(0xc0112806) of label 1:. A process will end up continuing
execution from the original function image, instead of the relocated.

correspond to absolute memory addresses within the mem-
ory image of the original function. It acts conservatively and
warns the user of such data uses. If permitted, it adjusts the
address for relocation.

Outbound branches. Linux produces semaphore and lock-
ing code in an unusual way. Figure 9(a) lists the definition
of down, a semaphore acquire operation. An atomic counter
decrement checks if the semaphore is still in use. In the com-
mon case where it’s not, execution falls through for improved
performance. If the semaphore is in use, down failed is
called. The pair of LOCK SECTION macros insert linker di-
rectives that place the uncommon call to down failed in
a separate memory area. The matching assembly produced
for this sequence, when used with pipe release, is shown
in Figure 9(b). On a failure to acquire a semaphore, exe-
cution jumps to global table Letext. A wrapper call to
down failed is issued, with a subsequent jmp back to the

main pipe release code.

If outbound branches are relocated, the jmp back to the func-
tion image will divert execution flow from a cloned function
to its original. DynAMOS detects such wrapper code out-
bound jumps and relocates their call/jmp pairs at the end
of the function image, adjusting their relative offsets.

Indirect outbound branches. When gcc compiles a C
function containing a switch statement with more than 4
case options it produces code that uses an indirection table.

static inline void down(struct semaphore * sem)
{

__asm__ __volatile__(
"# atomic down operation\n\t"
LOCK "decl %0\n\t" /* --sem->count */

"js 2f\n"
"1:\n"

LOCK_SECTION_START("")
"2:\tcall __down_failed\n\t"
"jmp 1b\n"

LOCK_SECTION_END
:"=m" (sem->count)

:"c" (sem)
:"memory");

}

(a) down semaphore acquire source in Linux 2.4.

__asm__ __volatile__(

281: mov %eax,%ecx
283: decl 0x6c(%esi)
286: js 158b <Letext+0x3c>

down(PIPE_SEM(*inode));
PIPE_READERS(*inode) -= decr;

28c: mov 0x108(%esi),%eax
292: sub %edx,0x18(%eax)
...

0000154f <Letext>:
...

158b: call 158c <Letext+0x3d>
1590: jmp 28c <pipe_release_v2+0x1c>

...

(b) Disassembled down semaphore acquire implementation.

Figure 9: Linux semaphore implementation.
(a) defines the down semaphore acquire operation in Linux 2.4. (b)
lists the matching assembly code produced by gcc 2.95-4 (edited)
examining pipe release. The end result is a js (0x286) to a wrapper
call (0x158b), and a jmp (0x1590) back.

The table is dereferenced with an indirect jump to determine
the next value of the program counter. An example table is
found in do signal. DynAMOS inspects indirect branches
to detect indirection tables. The table inspection stops at
the first 4-byte table entry whose target address falls outside
the range of the original function. The indirection tables
identified are relocated at the end of the new function image.

Multiple function entrypoints. icc produces multiple
entrypoints for some functions. Functions are split between
a prologue and a core for a total of two symbols per func-
tion. As shown in Figure 10, the prologue code <filp open>

is the safe entrypoint which moves function arguments from
the stack into registers. It does not contain a ret and falls
through to the core <filp open.>. We believe this behavior
is a result of an interprocedural constant propagation op-
timization. Callees invoke either the prologue or the core
accordingly.

Execution flow of the core (e.g. <filp open.>) in multiple
entrypoints can still be redirected by applying the trampo-
line. However, for newer versions of the function the com-
piler must produce code that is again split between a pro-
logue and a core. Prologue code (e.g. <filp open>) needs
to be at least 6-bytes long for the trampoline to be safely
applied. For a smaller prologue, the local bounce allocation
technique outlined in GILK [18], which we did not reimple-
ment, can be applied.

Kernel Linux 2.4.27 Linux 2.6.6 Linux 2.6.6

Compiler gcc 2.95 gcc 2.95 icc 8.0

Count % Count % Count %

Total symbols 5921 100.00 6900 100.00 6982 100.00
Updated without issues 4915 83.01 5682 82.35 5529 79.19
Non-functions 196 3.31 427 6.19 406 5.81
Backward branches 14 0.24 18 0.26 21 0.30
Small functions 68 1.15 77 1.12 160 2.29
Multiple entrypoints 0 0.00 0 0.00 618 8.85
Data-in-code: absolute address 121 2.04 117 1.70 7 0.10
Data-in-code: raised exception 121 2.04 192 2.78 230 3.29
Outbound branches 486 8.21 387 5.61 11 0.16

Wrapper code 357 6.03 309 4.48 7 0.10
Indirection tables 115 1.94 64 0.93 0 0.00
Other 14 0.24 14 0.20 4 0.06

Table 2: Breakdown of registration safety checks.
Backward branches rarely occur and functions smaller than the trampoline can comprise up to 2.29% of the kernel. Updates to these
functions can be supported by updating their callers. icc produces a considerable 8.85% of multiple function entrypoints that may need
special redirection logic. Wrapper code and indirection tables need special support for relocation and can occupy up to 7.97% of the
kernel. icc heavily inlines code and produces almost no outbound branches. Data-in-code cases (up to 4.48% with gcc and 3.39% with
icc) are the only ones who need user verification to safely update.

c01505f8 <filp_open>:
c01505f8: 8b 44 24 04 mov 0x4(%esp,1),%eax

c01505fc: 8b 54 24 08 mov 0x8(%esp,1),%edx
c0150600: 8b 4c 24 0c mov 0xc(%esp,1),%ecx

c0150604 <filp_open.>:
c0150604: 55 push %ebp

c0150605: 53 push %ebx
c0150606: 83 ec 30 sub $0x30,%esp

...
c015064f: 5d pop %ebp

c0150650: c3 ret

Figure 10: Two entrypoints produced by icc.
The prologue code <filp open> moves function arguments from the
stack into registers. It does not contain a ret and falls through to the
core <filp open.>. <filp open> is the safe entrypoint that will always
load registers with the function’s arguments.

Table 2 analyzes the effectiveness of the safety checks on
kernels compiled with two different compilers; the GNU C
Compiler v2.95 (gcc) and the Intel C Compiler v8.0 (icc).
We relocated all symbols in the text segment of the Linux
kernel. This includes symbols missing a return instruction,
which can consume up to 6.19% of the kernel. These sym-
bols are either assembly labels inside a bigger, cohesive func-
tion or initialization functions that were freed after kernel
bootup. Backward branches occur infrequently and small
functions can occupy a noticeable 1.12%. These cases can
be supported by updating their callers to directly invoke a
newer version. 8.85% of kernel symbols produced by icc are
multiple function entrypoints. These symbols need special
support for execution flow redirection. Data-in-code, which
are not handled by existing dynamic instrumentation sys-
tems, are detected in 4.48% of the kernel functions. They
are the only cases that require manual verification from the
user. Outbound branches essentially consist of outbound
wrapper code and indirection tables. Their relocation is
entirely automated. The icc compiler heavily inlines code
and produces almost no outbound branches. We believe
the remaining outbound branches encountered (0.24%) cor-
respond to a bug in our disassembler. Overall, relocation

needs no user intervention in 95.91% of the cases.

Safe removal. Removal of cloned functions relies on the
quiescence detection technique. But it can be complicated
when a function delays its execution. Examples include a
process sleeping in a driver waiting for response from hard-
ware, or a process sleeping indefinitely on sys wait while
waiting for a child process to exit. DynAMOS first re-
moves the trampoline, enabling access to the original func-
tion. While at least one process is still using the cloned
function on its stack, the framework waits for the function
to exit. If after a period of time (5 secs) the cloned function
has still not quiesced, removal fails and the function clone
remains active. Removal can be attempted at a later time,
or the framework can be instructed to continuously attempt
removal until it succeeds. Waiting does not endanger safety
and does not require user action. It simply delays removal.

Multiprocessor support. A multiprocessor locking con-
struct is not sufficient to safely install the trampoline in a
multiprocessor or multicore system. In a variable instruction-
length architecture like i386 a processor could execute the
beginning instructions of a function undergoing trampoline
installation and then the remaining invalid instructions that
are part of the trampoline. This operation can cause an ex-
ception or corrupt the system. In a fixed instruction-length
architecture, trampoline installation is always safe since the
trampoline is a single instruction.

One approach for safe instrumentation in i386 is to freeze
all other processors[24] using a single-byte trap instruction,
such as ud2. This instruction would redirect other proces-
sors to an interrupt handler and force them to spin until
installation is complete. First, the trap instruction would
be installed over the first byte of a function. Then, the sys-
tem would wait until no processors are executing between
the second byte and the sixth byte (end of trampoline) of
the function. Bytes 2-6 of the function image would be over-
written with bytes 2-6 of the trampoline code. Finally the
single-byte trap instruction at byte 1 would be overwritten

with byte 1 of the trampoline code. We did not yet imple-
ment multiprocessor support.

Symbol resolution. Most kernel symbols are not exported
for use by code dynamically loaded into the kernel. But
to compile alternate versions of core kernel functions that
do not provide a published interface, in other words non-
exported symbols, the absolute memory addresses of such
functions must be known. The userspace ld linker consults
the original kernel image (with -R vmlinux), dereferencing
symbols that would have otherwise remained undefined.

5. APPLICATIONS
In this section we illustrate our experience by mutating the
Linux kernel using DynAMOS. We demonstrate specific up-
dating type cases from Table 1 and describe how they are
supported by our mechanisms.

5.1 Openwall Security Patches
The Openwall project distributes a patch to Linux 2.4.22
that introduces various kernel hardening changes. One of
these changes disallows writing into named pipes not owned
by the current user in directories with the sticky bit (+t)
set, unless the owner is the same as that of the directory. It
involves modifying open namei, which is part of the under-
lying implementation of the open system call. We provided
a duplicate implementation of the stock open namei version
including this change, and compiled into a loadable kernel
module. After activating our enhanced version with Dy-
nAMOS, we verified that writes into untrusted named pipes
were successfully restricted by the kernel.

We applied another change that disallows following sym-
bolic links not owned by the current user. This fix involved
interjecting a call for security checks in open namei, and
vfs link. It also required inserting the same call into the
inline routine do follow link, forcing us to provide a second
version of function link path walk, which included calls to
the inline routine. After updating we verified that attempts
to access symbolic links created by other users were success-
fully denied by the kernel. These were examples of updating
quiescent single function implementations that changed the
internal and userspace requirements (Table 1: case 6).

5.2 Linger-Longer
The Linger-Longer [19] system provides a custom schedul-
ing policy exploiting the fine-grained availability of worksta-
tions in a network environment to run sequential and parallel
jobs. It introduces a new guest priority in the Linux 2.2.19
scheduler that prevents guest processes from running when
runnable host processes are present. We updated the kernel
scheduler with the Linger-Longer scheduling policy in a 4-
node test cluster. We confirmed that guest processes were
not receiving CPU time when host processes were active,
as defined in the updated scheduling policy. This was an
example of updating a non-quiescent single function imple-
mentation (Table 1: case 7).

5.3 Adaptive Memory Paging For Efficient
Gang Scheduling

We acquired a patch to Linux 2.2.19 introducing various
adaptive memory paging policies for efficient gang schedul-

ing [20]. Adaptive paging is implemented via modifications
in kswapd (page swapper thread), swap out (selects the task
with maximal swap count), rw swap page base (reads or
writes a swap page), swapin readahead (reads a block of
entries from the swap area), and filemap nopage (handles
a missing entry from the page cache). We dynamically acti-
vated this work in the kernel of a 4-node test cluster and ran
experiments with the NAS NPB2 benchmarks confirming
that these new adaptive paging mechanisms were effective,
reducing the job switching time.

Updating kswapd employed our methodology of dynami-
cally updating kernel threads. interruptible sleep on v2

forced kswapd to exit and immediately launched kswapd v2.
This was an example of updating a non-quiescent subsys-
tem that had a safe update point but did not require state
tracking (Table 1: case 12).

5.4 Process Checkpointing
EPCKPT is a kernel-assisted process checkpointing system
offered as a patch for Linux 2.4. It introduces a new system
call, collect data, that monitors the creation of semaphores,
pipes, and virtual memory areas of a process. Another sys-
tem call, checkpoint, saves in a file the process state. This
information is maintained as additional fields in the struct

task struct and struct file data structures. Dynami-
cally introducing EPCKPT in a kernel requires updating
these datatypes and the functions that use them.

For each datatype, DynAMOS maintained a shadow data
structure. Upon creation of variables of the new datatypes
(in do fork for struct task struct and in sys open for
struct file) a new variable (shadow) was created contain-
ing only the new fields of the new datatype. When the
new datatypes were freed (on do exit and fput), the shad-
ows were also freed. After dynamically applying EPCKPT,
we confirmed that processes could be checkpointed. When
the update is reversed, the datatype hash tables are freed.
Processes that executed the initialization functions do fork

and sys open before these functions were updated would not
find valid mappings of the updated datatype. The updated
functions contained logic that would not use the new fields
in those cases, but execute the original function logic.

This was an example of adding new fields in data struc-
tures by maintaining a shadow data structure (Table 1: case
5b). The function load elf interp was also extended to
accept the checkpointing file as an argument. The func-
tion’s caller, load elf binary, was updated to directly call
load elf interp epckpt, demonstrating a case of updating
a function signature (Table 1: case 10).

5.5 Synchronized Adaptation Of Pipefs
The default Linux pipefs uses a one page (4k) copy buffer to
transfer data. We aimed to adaptively update pipefs to use
a larger buffer when large amounts of data (over 64k) were
piped and investigate the potential performance benefit.

We applied our algorithm for synchronized updates. Alter-
nate versions of pipe new and pipe release were activated
with support for shadow variables for a struct inode. This
allowed us to maintain two new fields. One that tracks the
amount of data that were copied in a inode, and one that

Function Size Average Overhead
(bytes) execution (%)

time (µs)

do fork 1811 26.622 1.71
sys brk 247 0.295 43.48
do execve 487 79.631 0.83
sys open 127 5.759 8.04
sys read 235 3.537 1.67
sys write 235 9.407 2.00
do page fault 1127 2.092 5.82
sys kill 79 0.865 43.92

Table 3: Execution-flow redirection overhead.
The execution-flow redirection overhead lies mostly in the range
1-8%. It is not correlated to function size, since the callees of
some functions may assume most of the function’s workload.

flags whether the inode data buffer has been extended. We
supplied a pipe write adaptation handler to check whether
more than 64k were copied through the pipe inode and the
inode had not adapted yet. When the check succeeded,
the handler acquired the pipe semaphore, enlarged the data
buffer, preserved the existing buffer data, and released the
semaphore. The inode was flagged as having adapted and
the must update flag was raised to signal the second phase.

Linux 2.4 shows no performance benefit if pipefs is com-
piled with different buffer sizes. Linux 2.6 introduced asyn-
chronous I/O for pipefs and reported performance improve-
ments [12] from bigger buffer sizes in the range of 30-90%
with version 2.6.11. When pipefs adapted to a same-size
1-page buffer (no adaptation benefit) the overhead was re-
stricted to only 3.23%. This was an example of updating a
quiescent subsystem that had a safe update point and re-
quired state tracking (Table 1: case 11).

6. PERFORMANCE
The benchmarks were carried out on a 1.3GHz Intel Pentium
M system reporting 2595.22 BogoMIPS. The DynAMOS
kernel component itself has a small footprint of only 42KB.

Installing the trampoline consumes less than 1 nanosecond,
which is the time existing processes are delayed in their exe-
cution while the code update occurs (the processor remains
locked). To collect this measurement, DynAMOS dynam-
ically replaced its own internal function that installs the
trampoline with a duplicate version injected with bench-
marking support.

The adaptive memory paging work consumed the longest up-
dating latency of 2.30 seconds to be fully integrated into the
system. The Linger-Longer system was the quickest update
to apply in 0.68 seconds. These systems were updated on
2GHz Intel Pentium 4 systems reporting 3971.48 BogoMIPS.

The overhead of the redirection handler alone was recorded
when applied to a function performing string comparison
and floating point arithmetic. We measured the time the
function consumed to execute in its original form and after
registering the function with the framework. The overhead
was on average 20 nanoseconds.

Execution of common functions was timed both in their orig-
inal form and after registration with the framework. As
shown in Table 3, the overhead lies mostly in the range of 1-
8%. The performance penalty of the redirection is not amor-
tized by functions whose total execution time is less than 1
microsecond, such as sys brk and sys kill. While the over-
head of the redirection handler alone is only 20 nanoseconds,
the final function overhead can be much higher. Further
investigation leads us to believe that redirection using in-
direct addressing is detrimental to processor branch predic-
tion. Redirection using direct addressing could reduce this
overhead.

7. RELATED AND FUTURE WORK
DYMOS [11] is a dynamic software updating system for
userspace applications that introduces a redirection capa-
bility for function calls. This indirection would need source
code modifications to be applied in a kernel, and is con-
stantly present, hence could be expensive. A similar user-
level dynamic software updating system was proposed by
Hicks [7]. K42 [1] is an operating system specially designed
to support replacement of kernel code. Commodity operat-
ing systems must be redesigned to adopt its hot-swappable
capabilities.

Binary rewritters like ATOM [23] and EEL [10], statically
update function images just once. Run-time binary rewrit-
ters can also emit JIT code, such as Pin [13] and Diota [15].
KernInst [24], DynInst [8], and GILK [18] are dynamic in-
strumentation tools that go to the extend of building control
flow graphs at the basic block level for accurate instrumen-
tation. Detours [9], is a user-level dynamic instrumentation
library that focuses on function interception. DTrace [3]
depends on a kernel specially compiled with frame point-
ers, and in some cases containing stub probes. These tools
mostly focus on performance monitoring, hence merely in-
terpose code instruments. They do not address quiescence
detection, adaptive updates, synchronized updates, datatype
updates, or safe removal. They have not solved fundamental
problems surrounding dynamic software updates in consid-
erably mutating an application or demonstrated updates of
complete subsystems.

Other work [7, 1] proposes the harsh requirement of quies-
cence as a guarantee for a safe update. The RCU pattern of
K42 dictates all kernel threads must be short-lived and non-
blocking. In contrast, DynAMOS demonstrates quiescence
is not mandatory, and can also update low-level exception
code [2]. Compared to static approaches [11, 7], DynAMOS
essentially builds a redirection facility as needed during run-
time. It does not require the kernel source to have been
specially annotated with predetermined updateable points
and does not rely on the compiler. It can also apply up-
dates when function calls are pending and data reside on
the stack [17, 6].

Although sophisticated, dynamic instrumentation systems
generally cannot handle self-modifying code [14], or code-
in-data and data-in-code. Work that focused on this issue
for userspace processes reported a 2 to 22-fold slowdown [16],
relied on assistance from the operating system, and is not
suitable for instrumentation in a kernel. The goal of 100%
comprehensive, efficient dynamic instrumentation might be

overzealous. Instead, our solution outlined a pragmatic ap-
proach that serves software updating utility.

In contrast to dynamic instrumentation solutions, systems
that focus on dynamic software updates (DYMOS, Hick’s,
K42) replace procedures. Procedures are usually redesigned
through modifications to the existing source code. A ben-
efit of working with code at such a higher level (original
source language) is that a user does not need to decipher or
reverse engineer the side-effects of compiler optimizations,
which can reorder and remove code. Ultimately, the real
correction must be made in source code. Developers do not
construct modifications in basic blocks when producing a
new edition of a function, but instead modify complete pro-
cedures and recompile. Recent work by Neamtiu, Hicks et
al [17] performing updates at the procedure level demon-
strates substantial safety analysis algorithms and reliability
guarantees that can be enforced when updates are applied at
a procedure level. Such work can complement our system
in automatically producing safe updates. We envision in-
corporating in their prototype the support for shadow data
structures and our algorithm for synchronized updates to
automatically produce kernel updates. Operating system
vendors can apply these tools in preparation and distribu-
tion of dynamically updateable patches. Our methodolo-
gies have the potential to dynamically apply larger modifi-
cations, such as MOSIX and Linux Superpage support for
parallel applications, Nooks for improving OS reliability, and
update a kernel from one version to the next given as input
a patch file.

8. CONCLUSION
DynAMOS enables substantial dynamic and adaptive soft-
ware updates, not mere code interposition, in an unmodi-
fied commodity operating system kernel. It is founded on a
novel dynamic instrumentation methodology, termed adap-
tive function cloning. Execution flow can be switched au-
tonomously among multiple, possibly concurrently running,
function editions. Safe function-level updates can be applied
during runtime, including updates of non-quiescent subsys-
tems such as the scheduler and kernel threads. A synchro-
nized updating algorithm is presented for updating kernel
subsystems that require synchronization of multiple kernel
paths. Datatypes can be updated using shadow data struc-
tures. Quiescence and safe reversibility can be detected via
stack walk-through. Our methodologies can complement ex-
isting safety analysis and reliability tools in automatically
producing dynamic kernel updates.

We presented our experience successfully mutating the Linux
kernel. We introduced adaptive memory paging for efficient
gang scheduling and extended the kernel’s process scheduler
to support unobtrusive fine-grain cycle stealing. We enabled
kernel-assisted checkpointing, applied public security fixes,
and adaptively enlarged the pipefs subsystem’s data buffer
while in use. A selection of kernel functions was bench-
marked reporting overhead mostly in the range of 1-8%.

ACKNOWLEDGEMENTS
We are grateful to Michael Mondragon for his high-quality
work with the libdisasm disassembling library and his un-
selfish support.

REFERENCES
[1] Appavoo, J., Hui, K., Soules, C. A. N.,

Wisniewski, R. W., Silva, D. D., Krieger, O.,

Auslander, M., Edelsohn, D., Gamsa, B.,

Ganger, G. R., McKenney, P., Ostrowski, M.,

Rosenburg, B., Stumm, M., and Xenidis, J.

Enabling autonomic system software with
hot-swapping. IBM Systems Journal 42, 1 (2003),
60–76.

[2] Baumann, A., Heiser, G., Appavoo, J., Silva,

D. D., Krieger, O., and Wisniewski, R. W.

Providing Dynamic Update in an Operating System.
In USENIX Symposium on Operating Systems Design
and Implementation (April 2005), USENIX
Association.

[3] Cantrill, B., Shapiro, M. W., and Leventhal,

A. H. Dynamic instrumentation of production
systems. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (2004).

[4] Cowan, C., Autrey, T., Krasic, C., Pu, C., and

Walpole, J. Fast concurrent dynamic linking for an
adaptive operating system, 1996.

[5] David J. Pearce. Instrumenting the Linux Kernel,
MS thesis, 2000.

[6] Hicks, M. Dynamic Software Updating. PhD thesis,
Department of Computer and Information Science,
University of Pennsylvania, August 2001.

[7] Hicks, M., Moore, J. T., and Nettles, S.

Dynamic software updating. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation (June 2001),
ACM, pp. 13–23.

[8] Hollingsworth, J. K., Miller, B. P., and

Cargille, J. Dynamic program instrumentation for
scalable performance tools. 1994 Scalable High
Performance Computing (May 1994).

[9] Hunt, G., and Brubacher, D. Detours: Binary
Interception of Win32 Functions. In Proceedings of the
3rd USENIX Windows NT Symposium (July 1999),
pp. 135–143.

[10] Larus, J., and Schnarr, E. EEL:
Machine-Independent Executable Editing. In ACM
SIGPLAN 1995 Conference on Programming
Language Design and Implementation (PLDI) (June
1995), ACM SIGPLAN.

[11] Lee., I. DYMOS: A Dynamic Modification System.
PhD thesis, University of Wisconsin, Department of
Computer Science, Madison, April 1983.

[12] Linus Torvalds and William Lee Irwin III. Make
pipe data be a circular list of pages. LWN.net
(January 2005).

[13] Luk, C.-K., Cohn, R., Muth, R., Patil, H.,

Klauser, A., Lowney, G., Wallace, S., Reddi,

V. J., and Hazelwood, K. Pin: Building
Customized Program Analysis Tools with Dynamic
Instrumentation. In PLID 2005 (June 2005).

[14] Maebe, J., and Bosschere, K. D. Instrumenting
self-modifying code. In Proceedings of the Fifth
International Workshop on Automated Debugging
(AADEBUG 2003) (September 2003).

[15] Maebe, J., Ronsse, M., and Bosschere, K. D.

Diota: Dynamic instrumentation, optimization and
transformation of applications. In Compendium of
Workshops and Tutorials held in conjuction with
PACT ’02 (2002).

[16] Maebe, J., Ronsse, M., and Bosschere, K. D.

Instrumenting JVMs at the machine code level. In 3rd
PA3CT-symposium (September 2003).

[17] Neamtiu, I., Hicks, M., Stoyle, G., and Oriol,

M. Practical Dynamic Software Updating for C. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI) (June
2006).

[18] Pearce, D. J., Kelly, P. H. J., Field, T., and

Harder, U. GILK: A Dynamic Instrumentation Tool
for the Linux Kernel. In Computer Performance
Evaluation / TOOLS (2002), pp. 220–226.

[19] Ryu, K. D., and Hollingsworth, J. K.

Linger-Longer: Fine-Grain Cycle Stealing for
Networks of Workstations. In Supercomputing ’98
(November 1998).

[20] Ryu, K. D., Pachapurkar, N., and Fong, L. L.

Adaptive memory paging for efficient gang scheduling
of parallel applications. In IPDPS 2004 (April 2004).

[21] Seltzer, M. I., and Small, C. Self-monitoring and
self-adapting operating systems. Proceedings of the
Sixth workshop on Hot Topics in Operating Systems
(1997).

[22] Srivastava, A., Edwards, A., and Vo, H. Vulcan:
Binary transformation in a distributed environment.
Tech. Rep. MSR-TR-2001-50, April 2001.

[23] Srivastava, A., and Eustace, A. ATOM: A System
for Building Customized Program Analysis Tools. In
ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation (PLDI) (June
1994), ACM SIGPLAN.

[24] Tamches, A., and Miller, B. P. Fine-Grained
Dynamic Instrumentation of Commodity Operating
System Kernels. In Third Symposium on Operating
System design and implementation (February 1999).

