
UpStare manual

RELEASE_0-12-9

Kristis Makris <mkgnu@mkgnu.net>

UpStare manual: RELEASE_0-12-9
by Kristis Makris<mkgnu@mkgnu.net>

Published 2012-08-02

This is the documentation of UpStare, a system that can applyimmediate dynamic software updates in
multi-threaded userspace applications using stack reconstruction.

Table of Contents
1. About...1

1.1. Copyright Information..1
1.2. Disclaimer...2
1.3. Document Conventions...2

2. Introduction ..4

2.1. What Is It?...4
2.2. Example Updates..4

3. Installation..6

3.1. Availability..6
3.2. Installation...6

4. Preparing Updateable Programs..7

4.1. Invoking Wrapper Build Programs...7
4.2. Exporting Dynamic Symbols..8
4.3. Additional API Calls...8
4.4. Understanding The Compiler And Its Options...10

5. Preparing Dynamic Software Updates..13

5.1. Preparing An Updateable Original Version..13
5.2. Preparing An Updateable New Version..13
5.3. Describing Dynamic Software Updates..13

5.3.1. Describing Function Updates...14
5.3.2. Describing Datatype Updates...16
5.3.3. Describing Execution Continuation...17
5.3.4. Describing Update Constraints...22

5.4. Running The Patch Generator...24
5.5. Compiling The Dynamic Software Update Patch...29

6. Applying Dynamic Software Updates..31

7. System Internals...32

7.1. Function Call Indirection..32
7.2. Thread Entry-Points..32
7.3. Signal Handlers...32
7.4. Update Points..32
7.5. Exported Local Variables..33
7.6. Multi-Threaded Updates...33
7.7. Multi-Process Updates..34
7.8. Blocking System Calls..34
7.9. Dynamic Stack Tracing...35

iii

List of Figures
3-1. Forcing installation of RPM packages...6
3-2. Forcing installation of Debian packages..6
4-1. OriginalMakefile for PostgreSQL 7.4.16...7
4-2.Makefile modifications for an updateable PostgreSQL 7.4.16..7
4-3. Test program that attempts to be updated inside a signalhandler..9
4-4. Describing a compiler configuration..11
5-1. Describing function updates for vsFTPd from 2.0.4 to 2.0.5...14
5-2. Transforming datatypes for vsFTPd from 2.0.4 to 2.0.5..16
5-3. Viewing the execution continuation points ofvsf_standalone_main in vsFTPd 2.0.4................18
5-4. Describing execution continuation when updating fromBubblesort to Heapsort.............................19
5-5. Guarding against unintented reconstruction for vsFTPd 1.1.1 to 1.1.2..22
5-6. Describing update constraints..23
5-7. Preparing a dynamic software update patch for vsFTPd from 2.0.4 to 2.0.5.....................................25
5-8. Patch generator report to update vsFTPd from 2.0.4 to 2.0.5..25
5-9. Patch generator warnings for vsFTPd from 2.0.4 to 2.0.5. ..28
5-10. Compiling a dynamic software update patch for vsFTPd from 2.0.4 to 2.0.5.................................30
6-1. Applying a dynamic software update for vsFTPd from 2.0.4 to 2.0.5...31

iv

Chapter 1. About

1.1. Copyright Information

This system, including this document, is Copyright (C) 2006 by Kristis Makris<mkgnu@mkgnu.net>
(mailto:mkgnu@mkgnu.net). In binary form produced and digitally signedspecifically by Kristis Makris, it is
freely distributed for personal and academic/research use. It is NOTdistributed for commercial use. No other
binary forms can be distributed.

The source code and documentation, either in electronic or hardcopy format, may not be used for any purpose
whatsoever without the written permission of Kristis Makris.

The CIL framework used by this system (but NOT the CIL modules written specifically for THIS system) is
under a different license (found in src/multi_threaded_updates/cil/LICENSE). That license is reproduced
below:

Copyright (c) 2001-2007,
George C. Necula <necula@cs.berkeley.edu>
Scott McPeak <smcpeak@cs.berkeley.edu>
Wes Weimer <weimer@cs.berkeley.edu>
Ben Liblit <liblit@cs.wisc.edu>
Matt Harren <matth@cs.berkeley.edu>

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The names of the contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1

Chapter 1. About

(See http://www.opensource.org/licenses/bsd-license.php)

1.2. Disclaimer

No liability for the contents of this document can be accepted. Follow the instructions herein at your own
risk.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR APARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNEROR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OFLIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3. Document Conventions

This document uses the following conventions:

Descriptions Appearance

Warning

Caution
Don’t run with scissors!

Hint Tip: Would you like a breath mint?

Note Note: Dear John...

Information requiring special attention

Warning
Read this or the cat gets it.

File or directory name filename

Command to be typed command

Application name application

2

Chapter 1. About

Descriptions Appearance

Normal user’s prompt under bash shell bash$

Root user’s prompt under bash shell bash#

Environment variables VARIABLE

Code example <para>

Beginning and end of paragraph

</para>

This documentation is maintained in DocBook 4.2 SGML format.

3

Chapter 2. Introduction

2.1. What Is It?

UpStare is a system that can apply immediate dynamic software updates in multi-threaded programs. It
provides a compiler that applies high-level, source-to-source transformations that make programs
dynamically updateable. It is implemented in OCaml using the CIL v1.3.6 framework, C, and Perl, is
architecture and operating system independent, and has been successfully deployed on various
UNIX-like systems. Programmers only need to replace in their build process (e.g. Makefiles) calls to an
existing compiler likegcc to the UpStare compiler (hcucc.pl).

UpStare can update applications while they are live and running without stopping the application at all. It
achieves this goal by reconstructing the process stack and updating the program state in a single step.
This eliminates the possibility of an old version of the codeto be executed on a newer version of a
datatype representation (a type-safety error). The updates are applied immediately, even in
multi-threaded programs. It is not necessary to wait indefinitely for a quiescent program state, such as
waiting for a program thread to receive data from a network socket before an update can begin. A
running algorithm can be updated midstream its execution and resumed from a different point (not
necessarily the beginning) of another algorithm that is behaviorally equivalent: an algorithm that aims to
produce the same results while reusing existing progress.

2.2. Example Updates

Example updates that UpStare has been able to successfully carry out include:

• Recursion: Updating an application recursively computing Fibonaccinumbers, while nested deep in
the stack, to report additional information when the recursion unwinds.

• Network Sockets: Updating a server application while serving multiple clients without closing the
network socket.

• Multi-threaded Applications : Updating the main function body executed by multiple threads of an
application. Also, updating in a producer/consumer multi-threaded application only the consumer
threads while the producer threads remained unmodified.

• Multi-nested Long-Lived Loops: Updating in the middle of executing Bubblesort, a multi-nested
long-lived loop, to continue executing from the middle of a different multi-nested long-lived loop
implementing Selectionsort while reusing the existing program state. Additionally, updating from
Bubblesort to Heapsort, which is a drastically different sorting algorithm executing over different loop
iterators.

• vsFTPd: Applying 13 updates spanning 5.5 years of the multi-process (forked processes do not
communicate) Very Secure FTP Daemon (about 12,000 lines of code).

4

Chapter 2. Introduction

• PostgreSQL: Updating the multi-process (forked processes communicate) PostgreSQL 7.4.16
database server (more than 200,000 lines of code).

5

Chapter 3. Installation

3.1. Availability

UpStare is available in binary format for UNIX-like systemsand has been verified to work on Linux
2.4-2.6 on i386, Solaris 5.10 on SPARC, and Mac OS X on PowerPC, using the compilersgcc-2.95,
gcc-3.3, gcc-3.4, gcc-4.1, icc-8.0, icc-9.1, andicc-10.0. The project webpage
(http://freshmeat.net/projects/upstare) contains the most up to date information on the project, including
the latest release and manual.

A users mailing list is available for subscription (http://lists.mkgnu.net/mailman/listinfo/upstare-users),
or simply for sending email (mailto:upstare-users@lists.mkgnu.net).

3.2. Installation

UpStare is available in the form of Debian and RPM packages. The provided packages are:

• upstare-system: The UpStare system. It includes the updateable compiler, runtime system, patch
generator, and the tool that applies updates.

• upstare-doc: Documentation, including this manual.

• upstare-tests: The system tests which provide a large collection of example dynamic software
updates.

Tip: If you believe your system meets the package dependencies, but installing packages fails due to
missing dependencies, installation of the packages is still possible. Installation of RPM packages can
be forced as shown in Figure 3-1, and installation of Debian packages can be forced as shown in
Figure 3-2.

Figure 3-1. Forcing installation of RPM packages.

bash$ rpm -ivh --force --nodeps <RPM_PACKAGE_NAME>

Figure 3-2. Forcing installation of Debian packages.

bash$ dpkg -i --force-depends <DEB_PACKAGE_NAME>

6

Chapter 4. Preparing Updateable Programs

Preparing updateable programs requires no source code modifications in existing programs and minimal
modifications to a program’s build process (e.g.Makefile). Two types of modifications are necessary:

• Calls to an existing compiler, likegcc, must be changed to calls to the UpStare compiler,hcucc.pl.

• The flags supplied to a linker, likeld, must be modified to allow dynamically loaded shared objects
(dynamic software update patches) to use the symbols of the built binary.

Figure 4-1shows the originalMakefile used for the PostgreSQL 7.4.16 database server andFigure 4-2
shows the modifications needed to thisMakefile to prepare the PostgreSQL source code to become
updateable.Section 4.1andSection 4.2explain the modifications applied to thisMakefile.

Figure 4-1. Original Makefile for PostgreSQL 7.4.16.

...
CC = gcc
LD = ld
AR = ar
RANLIB = ranlib
LORDER = lorder
...
LDFLAGS =

Figure 4-2.Makefile modifications for an updateable PostgreSQL 7.4.16.

...
CC = hcucc.pl --merge --keepmerged --update-version=7416 --base-version
LD = hcucc.pl --merge --keepmerged --update-version=7416
AR = hcucil.pl --merge --mode=AR
RANLIB = echo
LORDER = echo
...
LDFLAGS = -Wl,--export-dynamic

4.1. Invoking Wrapper Build Programs

The build process is modified to invoke wrapper programs, such as a wrapper compiler, a wrapper linker,
etc. These wrapper programs prepare updateable source code, but with a twist: the.o object files
produced do not contain binary code, but text source code. During the linking process, a wrapper linker

7

Chapter 4. Preparing Updateable Programs

performs whole-program merging and prepares a_comb.c file containing the source code of all object
files. This final source code is then prepared to be updateable. The implication of this whole-program
merging indirection is that some utilities used during the build process, besides the compiler and linker,
may also need to also be wrapped.

In Figure 4-2, the "CC" variable, indicating the compiler used, needs to invoke the UpStarehcucc.pl
compiler. The arguments "--merge --keepmerged" are necessary to perform whole-program
merging. The"--update-version=7416" argument is supplied to indicate the initial version(7.4.16)
of the updateable program. The"--base-version" argument indicates that this is the original program
that will be started for the first time; future versions will be dynamically applied. The "LD" variable,
indicating the linker used, is redefined similar to "CC", but does not need the "--base-version"
argument. The "AR" variable, indicating the library archiving utility used,is redefined in a similar way to
function in a wrapper mode. Finally, other variables, such as "RANLIB" indicating the tool used to
generate an archive index, and "LORDER" indicating the tool used to list dependencies of object files, are
also modified. These variables are defining tools that are taking as input binary.o object files, and are
redifined to not attempt to process binary input.

In this example, whole-program merging produces the file
postgresql-7.4.16/src/backend/postgres_comb.c which contains the source code of all linked
objects and the final object file is calledpostgresql-7.4.16/src/backend/postgres_comb.o.
The final binary file retains its original namepostgresql-7.4.16/src/backend/postgres.

4.2. Exporting Dynamic Symbols

In Figure 4-2, the "LDFLAGS" variable, indicating the flags passed to the linker, is redefined to pass the
"-Wl,--export-dynamic" argument, which allows a dynamically loaded shared object(a dynamic
software update patch) to use the symbols in the built binary.

4.3. Additional API Calls

Additional API calls are available for special preparationof source code to be updateable. These API
calls are commonly used to develop test programs that can demonstrate the capabilities of UpStare,
accurately test new features, and conduct experiments. Dynamic software updates of real-world
programs do not rely on these API calls.

The API calls require including the filehcu_headers.h, and they are:

• HCU_STATIC_REQUEST_UPDATE_IMMEDIATE()

Insertion of this function call in a program forces a dynamicsoftware update to begin when this call is
issued. This is different than applying a dynamic software update when thehcuapply tool is invoked,
because there is no guarantee of which code the program may beexecuting when an update is

8

Chapter 4. Preparing Updateable Programs

requested withhcuapply. It is a way of initiating a dynamic software update precisely when a
particular piece of code is executing during experimentation.

Additionally, this function call means apply a dynamic software update using the updating model of
stack reconstruction. An alternative option is to apply a dynamic software update using the updating
model of update on function entry using theHCU_STATIC_REQUEST_UPDATE_LAZY() call.

• HCU_STATIC_REQUEST_UPDATE_LAZY()

Insertion of this function call in a program means apply a dynamic software update lazily: update
datatypes, if possible, and update functions on function entry. Do not apply stack reconstruction.

• HCU_STATIC_UPDATE_FILE(filename, version)

If the dynamic software update will be initiated with any of the
HCU_STATIC_REQUEST_UPDATE_*() calls, this call is used to inform the dynamic software update
runtime of the filename the dynamic software update patch is stored in, and the update version.

• HCU_MANUAL_UPDATE_POINT()

This function call manually inserts an update point. This isnot necessarily a point where an update
will begin.

Figure 4-3shows an example using these additional API calls to test if dynamic software updates are
refused if a signal handler is executing. TheHCU_STATIC_UPDATE_FILE() macro is used in the top of
the program to define the name of the dynamic software update patch file.
HCU_STATIC_REQUEST_UPDATE_IMMEDIATE() is called to request an update insidefunctionA()

which is called inside a signal handler.HCU_MANUAL_UPDATE_POINT() is placed right after this call to
ensure an update point will be encountered and the dynamic software update will be attempted. In this
example, the runtime detects the request for an update is issued while a signal handler is executing and
refuses to apply the update at that point. Of course, the update request will be served as soon as the signal
handler exits. But in this example no other update point willbe encountered and the update will not be
applied at all.

Figure 4-3. Test program that attempts to be updated inside asignal handler.

#include <stdio.h>
#include <signal.h>
#include "hcu_headers.h"
HCU_STATIC_UPDATE_FILE("./libsignal_handler_v1.c_v1_to_v2.hcupatch.so.2",2);

void functionA()

9

Chapter 4. Preparing Updateable Programs

{
printf("functionA_v1 entered\n");
HCU_STATIC_REQUEST_UPDATE_IMMEDIATE();
HCU_MANUAL_UPDATE_POINT();
printf("functionA_v1 exited\n");

}

void signal_handler(int s)
{
printf("signal_handler_v1 executed\n");
functionA();

}

int main()
{
if (signal(SIGUSR1, signal_handler) == SIG_ERR) {

perror("There was an error setting the signal handler:");
exit(-1);

}
kill(getpid(), SIGUSR1);
printf("Signal handler test exiting\n");

return 0;
}

4.4. Understanding The Compiler And Its Options

The compiler of updateable programshcucc.pl is a wrapper that invokes the compiler driver
hcubasic.pl with various options. By default,hcucc.pl enables all of the features needed to build
updateable programs. However it is possible to invoke the compiler driver by enabling only some of
these features, which is useful in preparing updateable programs with different capabilities. Enabling
only some features can be useful in measuring the performance of updateable programs.

Tip: Note that a lot of the compiler features offer additional options. For a complete list of compiler
options run hcubasic.pl --help.

The mandatory compiler features that must be enabled to prepare updateable programs are:

• Enabling common functionality for updating , enabled with the parameter--doCommonUpdate.

• Initializing the dynamic update runtime environment , enabled with the parameter
--doInitializeRuntime.

• Automatically inserting update points, enabled with the parameter--doInsertUpdatePoints.

10

Chapter 4. Preparing Updateable Programs

• Identifying thread entry-points, signal-handlers, and functions passed as parameters to libraries,
which need special support to be updated properly, enabled with the parameter--doWrapCalls.

In addition to the mandatory compiler features, the following features are enabled by default. These
features are optional:

• Converting blocking system calls to non-blocking, enabled with the parameter
--doBlockingSystemCallConversion.

• Supporting updates of multi-threaded and multi-process programs, enabled with the parameter
--doMultiThreadedUpdates.

• Preparing programs to be updateable using stack reconstruction, enabled with the parameter
--doStackReconstruction.

• Applying dynamic stack tracing to enforce runtime safety constraints, enabled with the parameter
--doDynamicSafety.

Other optional features useful in debugging the compiler orfurther directing the compiler are:

• Marking some functions as non-updateable, enabled with the parameter--doConfiguration
--compiler-configuration-file=<filename>. It requires the compiler configuration file
supplied to define a variable of the datatype:

• hcu_compiler_configuration_t

This datatype defines a structure with one variable: an arrayof function names that should not be
instrumented for stack reconstruction.

Figure 4-4shows an example compiler configuration file.

Figure 4-4. Describing a compiler configuration.

#include "hcu_compiler_configuration.h"

hcu_compiler_configuration_t compiler_configuration = {

/* non_updateable_functions */
{

"cash_cmp",
"on_exit_reset",
"smgr_redo",
"b64_dec_len",
...
"SetDefaultClientEncoding",
"Int_yy_init_buffer",

11

Chapter 4. Preparing Updateable Programs

"restriction_is_or_clause"
}

};

Warning

Marking some functions as non-updateable can lead to breaking
stack-reconstruction if a callee function returns to a non-updateable function.
This feature should only be used with a clear understanding of its
implications.

• Trace program executionat the source-code level, enabled with the parameter
--doExecutionTrace. This option can be useful in debugging the compiler.

• Print a control-flow graph in dot (Graphviz) format, enabled with the parameter--doPrintDot.
This option can be useful in understanding the control flow ofa program.

12

Chapter 5. Preparing Dynamic Software
Updates

Preparing dynamic software updates requires the complete source code of the original, updateable
program, and the complete source code of the newer version ofprogram. Using the original and new
versions, a dynamic software update patch can be prepared using thehcu_build_patch.sh patch
generator.

The next sections describe in detail how a dynamic software update patch can be prepared. Both the
original and newer source code of a program need to be first compiled as if they were being prepared to
be updateable (Section 5.1, Section 5.2). This will result in producing whole-program merged versions
of the source code, which are needed by the patch generator. Afile describing possible execution
continuation mappings (Section 5.3.3) from the old version to the new version must also be preparedby
the user. The patch generator (Section 5.4) produces the dynamic software update patch in source code,
and the patch is then compiled (Section 5.5) to a binary dynamic software update patch as dynamically
loadable shared object.

5.1. Preparing An Updateable Original Version

The original version of the program is prepared as describedin Chapter 4. In this example, preparing an
updateable vsFTPd version 2.0.4 produces the filevsftpd-2.0.4/vsftpd_comb.c.

5.2. Preparing An Updateable New Version

The new version of the program is also prepared as described in Chapter 4. This updateable version of the
program will never be run. The program must be prepared as updateable to produce the whole-program
merged source code of the program, which will be supplied to the patch generator. In this example,
preparing an updateable vsFTPd version 2.0.5 produces the file vsftpd-2.0.5/vsftpd_comb.c.

5.3. Describing Dynamic Software Updates

For every dynamic software update patch that will be produced, a file must be provided that describes
how the update should be applied. This file describes:

• Which functions will be updated.

• Which global variables and which datatypes will be updated. Note that a datatype update affects
functions that use that datatype.

• How program execution should continue after an update is applied.

13

Chapter 5. Preparing Dynamic Software Updates

• Runtime update constraints.

These four items are described next.

5.3.1. Describing Function Updates

The functions that should be updated need to be described to the dynamic software update runtime.
Figure 5-1shows an example describing the updated functions when updating vsFTPd from version
2.0.4 to version 2.0.5.

Figure 5-1. Describing function updates for vsFTPd from 2.0.4 to 2.0.5.

#include "hcu_mappings.h"

hcu_mapping_update_description_t mapping_updates_v2[] = { { "main", "main" } };
hcu_mapping_function_update_description_t mapping_function_updates_v2[] = {
{ "str_locate_text_reverse", "str_locate_text_reverse", 0 },
{ "emit_greeting", "emit_greeting", 0 },
{ "handle_login", "handle_login", 0 },
{ "str_locate_chars", "str_locate_chars", 0 },
{ "vsf_privop_do_login", "vsf_privop_do_login", 0 },
{ "vsf_remove_uwtmp", "vsf_remove_uwtmp", 0 },
{ "handle_retr", "handle_retr", 0 },
{ "vsf_sysutil_connect_timeout", "vsf_sysutil_connect_timeout", 0 },
{ "handle_upload_common", "handle_upload_common", 0 },
{ "handle_user_command", "handle_user_command", 0 },
{ "main", "main", 1 },
{ "handle_mdtm", "handle_mdtm", 0 },
{ "handle_size", "handle_size", 0 },
{ "vsf_insert_uwtmp", "vsf_insert_uwtmp", 0 },
{ "handle_feat", "handle_feat", 0 },
{ "str_locate_text", "str_locate_text", 0 },
{ "get_unique_filename", "get_unique_filename", 0 },
{ "vsf_sysutil_chroot", "vsf_sysutil_chroot", 0 },
{ "vsf_sysdep_check_auth", "vsf_sysdep_check_auth", 0 },
{ "vsf_sysutil_tzset", "vsf_sysutil_tzset", 0 },
{ "handle_pass_command", "handle_pas_command", 0 },
{ "vsf_ls_populate_dir_list", "vsf_ls_populate_dir_list", 0 },
{ "calc_num_send", "calc_num_send", 0 },
{ "handle_stat", "handle_stat", 0 },
{ "vsf_privop_do_file_chown", "vsf_privop_do_file_chown", 0 }

};

The description file defines two variables of two key datatypes:

• hcu_mapping_update_description_t

14

Chapter 5. Preparing Dynamic Software Updates

This datatype defines an array of threads that should be updated. One variable declaration of this
datatype is required.

Since vsFTPd is a single-threaded program, this array contains only one entry. The entry requests that
the thread calledmain (the thread whose entrypoint function is the function called main()) will have
its stack reconstructed, when updated, all the way up to the function calledmain().

Tip: It would be possible to request for this thread to be have its stack partially reconstructed: to
unwind up to one of the callees of the main() function instead of unwinding all the way up to the
main() function. This could be useful as an optimization that minimizes the updating latency in a
deeply recursive program. But for most programs unwinding the stack up to the thread entrypoint
would have little impact in the total updating latency.

• hcu_mapping_function_update_description_t

This datatype defines an array of functions that should be updated. One variable declaration of this
datatype is required.

Each definition of a function update consists of three fields.The name of the function that will be
updated (from the original source code), the name of the function that will take its place (from the new
source code), and a flag indicating whether the original function was a thread entrypoint.

Thread entrypoints are themain() function, functions that are passed as arguments to a
pthread_create(), and signal handlers defined withsignal() andsigaction().

Since vsFTPd is a single-threaded program, the entry to update themain() function is flagged as a
thread entrypoint.

15

Chapter 5. Preparing Dynamic Software Updates

Warning

But wait! How did a user produce the list of function updates?

The patch generator, described in Section 5.4, can produce the list of modified
functions when invoked with empty variable definitions of the two required
datatypes hcu_mapping_update_description_t and
hcu_mapping_function_update_description_t. It is expected that a user will
first run the patch generator to produce the list of function updates, and then
manually produce the update description file.

But why? Isn’t the patch generator capable of producing the entire update
description file?

The patch generator can produce the entire update description file, but that would
be presumptuous. Producing the entire list of function updates in the file would
guarantee that a program is representation consistent : the running version
matches the source code. However, the user may not desire an update to be
representation consistent for various reasons. A user may want to apply an update
to only a small collection of functions. For example, the user may want to apply a
security fix or to avoid introducing, as part of the update, additional known defects
that are present in the updated version of the program.

Conclusion: Allowing users to manually produce a customized update description
file separates policy from mechanism in the patch generator.

There are plans to enhance the patch generator to produce a template update
description file that the user may customize to produce the final file.

5.3.2. Describing Datatype Updates

Datatype updates can affect both global variables and localvariables in functions that use the datatype.
Datatype updates are automatically produced by the patch generator as described inSection 5.4. To
complement incomplete datatype updates a user can manuallywrite datatype transformers in the
mappings file. Datatype transformer names must contain the special prefix
HCU_datatype_transformation__ and to be invoked from the special function
HCU_datatype_transformations_function_.

For example, theparseconf_uint_array variable is an array than has had its size extended in the
newer version 2.0.5. The values of this array are preserved in the updated
parseconf_uint_array_v205 variable for version 2.0.5, as shown inFigure 5-2.

16

Chapter 5. Preparing Dynamic Software Updates

Figure 5-2. Transforming datatypes for vsFTPd from 2.0.4 to2.0.5.

void HCU_datatype_transformation__struct__parseconf_uint_setting__arraysize17_to_struct__parseconf_uint_setting__arr

{ long array_counter ;

{
array_counter = 0;
while (1) {

HCU_datatype_transformation__struct__parseconf_uint_setting__arraysize17_to_struct__parseconf_uint_setting__

if (array_counter >= 17 - 1) {
break;

}
array_counter ++;

}

// Must extend the array
// NOTE: The following 11 statements are not automatically generated yet
((*new)[16]).p_setting_name = malloc(strlen("delay_failed_login") + 1);
memcpy(&((*new)[16]).p_setting_name, "delay_failed_login" "\0", strlen("delay_failed_login")
((*new)[16]).p_variable = &tunable_delay_failed_login;

((*new)[17]).p_setting_name = malloc(strlen("delay_successful_login") + 1);
memcpy(&((*new)[17]).p_setting_name, "delay_successful_login" "\0", strlen("delay_successful_login")
((*new)[17]).p_variable = &tunable_delay_successful_login;

((*new)[18]).p_setting_name = malloc(strlen("max_login_fails") + 1);
memcpy(&((*new)[18]).p_setting_name, "max_login_fails" "\0", strlen("max_login_fails")
((*new)[18]).p_variable = &tunable_max_login_fails;

((*new)[19]).p_setting_name = 0;
((*new)[19]).p_variable = 0;

}
}

int HCU_datatype_transformations_function() __attribute__((__HCU_ATTRIBUTE_NON_UPDATEABLE__))
{

HCU_datatype_transformation__struct__parseconf_uint_setting__arraysize17_to_struct__parseconf_uint_setting__ar

// NOTE: The following 3 statements are not automatically generated yet
tunable_delay_failed_login = 1;
tunable_delay_successful_login = 0;
tunable_max_login_fails = 3;

printf("HCU_datatype_transformations_function_v205 executed\n");
return (0);

}

17

Chapter 5. Preparing Dynamic Software Updates

5.3.3. Describing Execution Continuation

UpStare is able to update a running algorithm midstream its execution and resume from a different point
(not necessarily the beginning) of another algorithm that is behaviorally equivalent: an algorithm that
aims to produce the same results while reusing existing progress. This capability requires user assistance.
A user needs to define the mapping of continuation points in the original program to continuation points
in the new version.

Continuation points are uniquely identified with an integerenumeration starting from 0 for every
program function. This enumeration is embedded in a.cil.c file which contains the updateable source
code. The continuation points of each function are enumerated in the beginning of the function (though
the function name now includes the postfix_vXXX, where XXX is the version number) ascase
statements in a bigswitch statement.

Tip: There are plans to improve the identification (not the selection) of continuation points to use
strings rather than numeric ids. This will further minimize the input needed by a user in defining
continuation mappings.

For example, for vsFTPd 2.0.4 the update source code is prepared invsftpd-2.0.4/vsftpd.cil.c.
To view the continuation points of functionvsf_standalone_main, a user should look at the big
switch statement in the beginning of functionvsf_standalone_main_v204, which is shown in part
in Figure 5-3.

Figure 5-3. Viewing the execution continuation points ofvsf_standalone_main in vsFTPd 2.0.4.

struct vsf_client_launch vsf_standalone_main_v204(void)
{

...

switch (__cil_tmp20) {
case 0:
goto vsf_standalone_main_entrypoint;
case 1:
goto hcu_try_to_update_1_after;
case 2:
goto vsf_sysutil_get_ipaddr_size_2_after;
case 3:
goto die_3_after;
case 4:
goto vsf_sysutil_fork_4_after;

...

18

Chapter 5. Preparing Dynamic Software Updates

Figure 5-4shows an example describing execution continuation when updating Bubblesort and
continuing execution with Heapsort.

Figure 5-4. Describing execution continuation when updating from Bubblesort to Heapsort.

#include "hcu_mappings.h"
#include "hcu_headers.h"

hcu_mapping_update_description_t mapping_updates_v2[] = { { "main", "main" } };
hcu_mapping_function_update_description_t mapping_function_updates_v2[] = {
{ "main", "main", 1 }

};
hcu_mapping_algorithmic_equivalence_t mapping_equivalence_v2_bubblesort[] = {
{ "bubbleSort",

"heapSort",
1,
{ { 2, 1 } }

}
};

struct hcu_stack_local_bubbleSort_v1_s {
int i ;
int j ;
int temp ;
struct hcu_stack_frame_fields_s hcu_stack_frame_fields ;

};

struct hcu_stack_local_heapSort_v2_s {
int i ;
int temp ;
struct hcu_stack_frame_fields_s hcu_stack_frame_fields ;

};

struct hcu_function_formal_heapSort_v2_s {
int *numbers ;
int array_size ;

};

void HCU_stack_transformer__heapSort(void *transform_stack_to ,
void *transform_stack_from ,
void *transform_params_to)

{
struct hcu_stack_local_heapSort_v2_s *stack_to ;
struct hcu_stack_local_bubbleSort_v1_s *stack_from ;
struct hcu_function_formal_heapSort_v2_s *params_to ;

stack_to = (struct hcu_stack_local_heapSort_v2_s *)transform_stack_to;
stack_from = (struct hcu_stack_local_bubbleSort_v1_s *)transform_stack_from;
params_to = (struct hcu_function_formal_heapSort_v2_s *)transform_params_to;

/* Continue the heapsort algorithm from the current iteration (redo
the last iteration). Don’t restart it from scratch.

19

Chapter 5. Preparing Dynamic Software Updates

Our bubbleSort implementation processes an array from the
end. Thus we simply have to shrink the array size to define the
new bounds of the array for heapSort. */

params_to->array_size = stack_from->i + 1;
hcu_copy_stack_frame_fields(&stack_to->hcu_stack_frame_fields,

&stack_from->hcu_stack_frame_fields);
}

The description file defines a variable of an important datatype:

• hcu_mapping_algorithmic_equivalence_t

This datatype defines an array of behaviorally equivalent functions.

In each array element, the first parameter is the name of the function that will be updated,
bubbleSort. The second parameter is the name of the behaviorally equivalent function from which
execution will continue (heapSort) when it is time for the stack of the original function
(bubbleSort) to be reconstructed. The third parameter reports the number of elements in the fourth
parameter, which is an array. Each element of this array lists the update point number of the original
function (update point2 from bubbleSort) and a continuation point in the new function (heapSort)
from which execution should resume.

The description file also defines a stack-state transformer that will allow Heapsort to continue execution
from where Bubblesort stopped, reusing the current programstate. The transformer name must contain
the special prefixHCU_stack_transformer__ and accepts three special parameters:

• void *transform_stack_to

A pointer to the stack of the new functionheapSort.

• void *transform_stack_from

A pointer to the stack of the old functionbubbleSort.

• void *transform_params_to

A pointer to astruct variable that groups the formal parameters of the new functionheapSort.

Thestruct definitions for the stack of the old and new functions, and theformal parameters of the new
function also need to be defined. These definitions can also beproduced by the patch generator, as
discussed inSection 5.3.1. The stack-state transformer invokes a special function that preserves
bookkeeping information maintained by the runtime:

20

Chapter 5. Preparing Dynamic Software Updates

• hcu_copy_stack_frame_fields(from, to)

Preserves the execution continuation point in the stack of the new function. Executing this function
within a stack-state transformer is required.

Tip: So what happens in this example?

The stack of the updated function heapSort does not have state preserved from the stack of the old
function bubbleSort at all. The stack of the old function is only consulted to change the formal
parameters of the new function, and the stack of the new function remains uninitialized. Essentially,
the new function continues execution by taking as input a smaller array of numbers to be sorted: it
continues sorting from where Bubblesort stopped.

21

Chapter 5. Preparing Dynamic Software Updates

Warning

Unintentional reconstruction. Section 5.3.2 and this section showed that
functions supplied by the user can transform datatypes and stack frames. These
functions may need to call helper functions of the old version of the application to
prepare data structures.

But these functions are called when the application itself is under stack
reconstruction. A call to any of its functions results to that function attempting to
re-reconstruct its stack, which is not what the transformer intented to do. To guard
against this behavior, calls to such functions need to:

• First, call hcu_set_update_mode_off(), which disables stack
reconstruction.

• Second, call the function they need.

• Third, call hcu_set_update_mode_on(), which enables stack
reconstruction.

Figure 5-5 shows an example stack transformer updating vsFTPd from version
1.1.1 to version 1.1.2 that requires allocating two hash tables using calls to
hash_alloc.

Figure 5-5. Guarding against unintented reconstruction for
vsFTPd 1.1.1 to 1.1.2.

void HCU_stack_transformer__vsf_standalone_main(void *transform_stack_to ,
void *transform_stack_from
void *transform_params_to)

{ struct hcu_stack_local_vsf_standalone_main_v112_s *stack_to ;
struct hcu_stack_local_vsf_standalone_main_v111_s *stack_from ;
struct hcu_function_formal_vsf_standalone_main_v112_s *params_to ;

// Automatically generated transformations follow...
// ...

// Manual transformation that calls application functions
hcu_set_update_mode_off();
s_p_ip_count_hash = hash_alloc(256U, sizeof(struct vsf_sysutil_ipv4addr),

& hash_ip);
s_p_pid_ip_hash = hash_alloc(256U, sizeof(int), sizeof(struct vsf_sysutil_ipv4addr

& hash_pid);
hcu_set_update_mode_on();

}

5.3.4. Describing Update Constraints

Defining update constraints can help reduce the amount of state that needs to be mapped from the old

22

Chapter 5. Preparing Dynamic Software Updates

version of an application to the new version. Depending on the updating model used, defining update
constraints can also help enforce runtime safety.

If the updating model requested is to apply updates lazily, it is often necessary to define constraints that
enforce type-safety and transaction-safety. The lazy updating model is enabled either using the
HCU_STATIC_REQUEST_UPDATE_LAZY() call or by invoking the toolhcuapply with the
command-line parameter--update-model=lazy.

Tip: Defining update constraints for type-safety is not necessary if the updating model requested is
to apply updates immediately.

However, defining update constraints for transaction-safety can be useful both for applying updates
immediately and lazily.

Figure 5-6shows an example describing update constraints.

Figure 5-6. Describing update constraints.

#include "hcu_mappings.h"
#include "hcu_safety_constraints.h"

hcu_safety_constraint_t hcu_safety_constraints_v2[] = {
{ "main",

"functionA",
1,
{ { -1, -1, 0 } }

}
};

The description file defines a variable of an important datatype:

• hcu_safety_constraints_t

This datatype defines an array of update constraints.

For each array element, the first parameter is the name of thread on which the constraints should be
enforced. The second parameter is the name of function for the requested thread on which the
constraints should be enforced. The third parameter is the number of elements in the fourth parameter.
The fourth parameter is an array of update constraints in disjunctive normal form. For example, the
constraint:

(a|b)&c

23

Chapter 5. Preparing Dynamic Software Updates

should be expressed as:

c&a|c&b

This means one should declare an array with two elements. In the first element one should add the two
items:c a. In the second element one should add the two items:c b. For each constraint definition,
there are three parameters

• The minimum execution point allowed for a valid update. Execution must have passed this point to
match the constraint.

Note that a minimum of -1 is special and meansanywhere (starting from the beginning of the
function).

• The maximum execution point allowed for a valid update. Execution must have not yet encountered
this point to match the constraint.

Note that a minimum of -1 is special and meansanywhere (until the end of the function).

• Whether this constraint is a negation (NOT).

Tip: So what happens in this example?

The constraint prohibits updates anywhere inside the function functionA for the main thread.

5.4. Running The Patch Generator

Thehcu_build_patch.sh patch generator is invoked to produce a dynamic software update patch in
source code format. The patch generator compares the old andnew versions of a program, identifies their
differences, and taking into consideration the dynamic update description provided by the user it
produces a patch.

Figure 5-7shows an example of running the patch generator to produce a dynamic software update patch
that can update vsFTPd version 2.0.4 to version 2.0.5. The patch generator requires the following
parameters:

• The whole-program merged source code of the original version (vsftpd-2.0.4/vsftpd_comb.c
from Section 5.1).

24

Chapter 5. Preparing Dynamic Software Updates

• The name of the old version (204).

• The whole-program merged source code of the new version (vsftpd-2.0.5/vsftpd_comb.c from
Section 5.2).

• The name of the new version (205).

• The file describing the update (2.0.4_to_2.0.5_mappings.c from Section 5.3.3).

• The version number the original program (204) was running when it was first started. This can be
different than the old version, if for example a program started at version 1.2.0, was updated several
times, and now an update is prepared between 2.0.4 and 2.0.5.

• A yes/no flag indicating whether the patch should support dynamic stack tracing.

• A yes/no flag indicating whether the patch should support blocking system calls.

Figure 5-7. Preparing a dynamic software update patch for vsFTPd from 2.0.4 to 2.0.5.

bash$ hcu_build_patch.sh \
vsftpd-2.0.4/vsftpd_comb.c 204 \
vsftpd-2.0.5/vsftpd_comb.c 205 \
2.0.4_to_2.0.5_mappings.c 204 \
yes yes

The patch generator produces a dynamic software update patch in source code format
(vsftpd_comb.c_v204_to_v205.hcupatch.c). It also produces a report of differences between the
original version 2.0.4 to the new version 2.0.5.Figure 5-8shows parts of this report for vsFTPd as an
example. The report lists the additions and updates of variables and functions.

Figure 5-8. Patch generator report to update vsFTPd from 2.0.4 to 2.0.5.

...
variable ’s_p_statbuf___6’ not found in file ’vsftpd-2.0.4/vsftpd_comb.c.hcudiff.c’. It is
variable ’tunable_delay_successful_login’ not found in file ’vsftpd-2.0.4/vsftpd_comb.c.hcudiff.c’.
variable ’envtz’ not found in file ’vsftpd-2.0.4/vsftpd_comb.c.hcudiff.c’. It is an added
variable ’tunable_max_login_fails’ not found in file ’vsftpd-2.0.4/vsftpd_comb.c.hcudiff.c’.
variable ’tunable_delay_failed_login’ not found in file ’vsftpd-2.0.4/vsftpd_comb.c.hcudiff.c’.
...
variable ’parseconf_uint_array’ has HAD its definition updated. It is an updated variable.
...
function ’str_locate_text_reverse’ has HAD its definition updated. It is an updated function.
function ’emit_greeting’ has HAD its definition updated. It is an updated function.
function ’handle_login’ has HAD its definition updated. It is an updated function.
function ’str_locate_chars’ has HAD its definition updated. It is an updated function.
function ’vsf_privop_do_login’ has HAD its definition updated. It is an updated function.
function ’vsf_remove_uwtmp’ has HAD its definition updated. It is an updated function.
function ’handle_retr’ has HAD its definition updated. It is an updated function.
function ’vsf_sysutil_connect_timeout’ has HAD its definition updated. It is an updated function.
function ’handle_upload_common’ has HAD its definition updated. It is an updated function.
function ’handle_user_command’ has HAD its definition updated. It is an updated function.
function ’main’ has HAD its definition updated. It is an updated function.
function ’handle_mdtm’ has HAD its definition updated. It is an updated function.

25

Chapter 5. Preparing Dynamic Software Updates

function ’handle_size’ has HAD its definition updated. It is an updated function.
function ’vsf_insert_uwtmp’ has HAD its definition updated. It is an updated function.
function ’handle_feat’ has HAD its definition updated. It is an updated function.
function ’str_locate_text’ has HAD its definition updated. It is an updated function.
function ’get_unique_filename’ has HAD its definition updated. It is an updated function.
function ’vsf_sysutil_chroot’ has HAD its definition updated. It is an updated function.
function ’vsf_sysdep_check_auth’ has HAD its definition updated. It is an updated function.
function ’vsf_sysutil_tzset’ has HAD its definition updated. It is an updated function.
function ’handle_pass_command’ has HAD its definition updated. It is an updated function.
function ’vsf_ls_populate_dir_list’ has HAD its definition updated. It is an updated function.
function ’calc_num_send’ has HAD its definition updated. It is an updated function.
function ’handle_stat’ has HAD its definition updated. It is an updated function.
function ’vsf_privop_do_file_chown’ has HAD its definition updated. It is an updated function.
Diff Report:
============

Type definitions:

Added: 0 0.00
Deleted: 0 0.00
Updated: 1 0.14
Same: 693 99.86
Total: 694 100.00

Variable definitions:

Added: 5 2.14
Deleted: 0 0.00
Updated: 1 0.43
Same: 228 97.44
Total: 234 100.00

Function definitions:

Added: 0 0.00
Deleted: 0 0.00
Updated: 25 4.82
Same: 494 95.18
Total: 519 100.00

Patch format. The dynamic software update runtime requires that patchescontain three special
functions. These functions are invoked by the runtime at special points during an update to coordinate its
successful application. They are used to apply datatype updates, to apply function updates, and to
provide a description of the update. Besides generating these functions, the patch generator also
automatically produces datatype and stack-state transformers.

The three special functions expected by the runtime are:

26

Chapter 5. Preparing Dynamic Software Updates

• int HCU_update_description_function()

Invoked before the update is attempted to describe to the runtime possible execution continuations and
which threads will be updated.

• int HCU_datatype_transformations_function()

Invoked after unwinding the old stack and before reconstructing the new stack to transform the
datatypes of global variables and to set values for new global variables.

• int HCU_function_updates_function()

Invoked after unwinding the old stack and before reconstructing the new stack to update functions to
use their new versions.

This capability is used to execute code that will allow updated functions to take control over the
program execution of the old version.

These special functions are automatically produced by the patch generator. The functions can be
overriden by the user by supplying different definitions in the mappings file
(2.0.4_to_2.0.5_mappings.c). If alternate definitions are found in the mappings file, then those
definitions are used instead of the ones the patch generator would have produced.

There are two reasons a user may want to provide alternate definitions of these functions. First, if the
user wants to manually create patches, or produce them with apatch generator the user writes, and
generally experiment with the runtime. Second, if it is identified that the patch generator produces
incomplete or incorrect definitions.

Tip: An effective practice is to use the patch generator to create a patch, identify which transformers
may be incomplete, to complement them, and then to copy them in the mappings file. This new
mappings file that is now more complete is then used to run the patch generator again. The goal is to
produce a mappings file that fully describes the update, so that generating and applying patches
becomes a fully automatic process.

27

Chapter 5. Preparing Dynamic Software Updates

Warning

The patch generator currently does not automatically produce statements that set
the values of new variables, such as the values of the variables
tunable_delay_login, tunable_delay_successful_login, and
tunable_max_login_fails shown in Figure 5-2. There are plans to implement
this feature.

Datatype transformers. The patch generator produces transformers that automatically transfer the
existing values of old variables to the updated variables. This works well when astruct is extended to
have an additional field. It also automatically preserves some datatype conversions such as fromint to
long. Finally, it automatically preserves arrays that have their size increase by producing a transformer
that copies all previous array values to the new array variable.

When the patch generator encounters a datatype transformation it cannot reason about, or a new field
which should be initialized by the programmer it reports a warning, as shown inFigure 5-9.

Figure 5-9. Patch generator warnings for vsFTPd from 2.0.4 to 2.0.5.

WARNING: HCU_stack_transformer__handle_alarm_timeout():Don’t know how to accurately preserve
WARNING: HCU_stack_transformer__handle_io():Don’t know how to accurately preserve the field
WARNING: HCU_stack_transformer__handle_sigalrm():Don’t know how to accurately preserve the
WARNING: HCU_stack_transformer__handle_sigurg():Don’t know how to accurately preserve the
WARNING: HCU_stack_transformer__handle_upload_common():Don’t know how to accurately preserve
WARNING: HCU_stack_transformer__handle_upload_common():Unable to match an int definition
WARNING: HCU_stack_transformer__handle_upload_common():Field ’tmp___4’ of type ’int ’ is
WARNING: HCU_datatype_transformation__struct__vsf_session_v204___to_struct__vsf_session_v205__():Field
WARNING: HCU_stack_transformer__vsf_sysdep_check_auth():Field ’tmp___1’ of type ’char const
WARNING: HCU_stack_transformer__vsf_sysutil_tzset():Field ’retval’ of type ’int ’ is a new
WARNING: HCU_stack_transformer__vsf_sysutil_tzset():Field ’tzbuf’ of type ’char [sizeof("+HHMM!")]’
WARNING: HCU_stack_transformer__vsf_sysutil_tzset():Field ’tmp’ of type ’long ’ is a new
WARNING: HCU_stack_transformer__vsf_sysutil_tzset():Field ’tmp___0’ of type ’unsigned int

If the user provides custom datatype transformers in the mappings file, the patch generator produces the
custom transformers in the patch.

Stack transformers. For functions that are not modified, the dynamic software update runtime
automatically preserves their stack with amemcpy() call. Thus the patch generator does not produce
stack transformers for them. For functions that are not modified but have the datatypes of their local
variables updated, the patch generator automatically produces stack transformers that invoke the
appropriate datatype transformers.

28

Chapter 5. Preparing Dynamic Software Updates

If the user provides custom stack-state transformers in themappings file, the patch generator produces
the custom transformers in the patch.

5.5. Compiling The Dynamic Software Update Patch

The dynamic software update patch produced by the patch generator, which is in source code format, is
compiled using thehcucc.pl compiler to produce a dynamic software update patch in binary format,
which is a dynamically loadable shared object library. Thisbinary dynamic software update patch is later
used to apply a live update.

Figure 5-10shows an example of preparing a binary dynamic software update patch that will update
vsFTPd from version 2.0.4 to version 2.0.5. The compilationis carried out in two steps.

• First, the patch is compiled to also be updateable itself. The"--update-version=205" argument is
used to indicate that the patch will update the original version to the new version 2.0.5.

Note that compilation is executed with the-fPIC flag which produces position-independent code.
Position-independent code is required when building shared object libraries.

The output of this first compilation step is an updateable object file named
vsftpd_comb.c_v204_to_v205.hcupatch.o.

Tip: To manage the versioning complexity of applying multiple dynamic software updates during
the lifetime of an application, compiling the patch to be updateable appends to many datatypes,
variables and functions the postfix _vXXX, where XXX is the version number. For example, for an
update from vsFTPd 2.0.4 to vsFTPd 2.0.5, the compilation appends the postfix _v205.

The datatypes, variables and functions that have their names changed are all datatypes, variables
and functions that differ between the two versions, all functions defined in the mappings file, and
all automatically generated datatype and stack transformers.

• Second, this updatable object file is re-linked to create a dynamically loadable shared object library
file. Creating a loadable shared object library file is necessary for the runtime to be able to load the
patch into the address space of an already running process using dlopen().

Note that the name of this library is supplied with the-soname linker parameter and it is
vsftpd_v205_to_v205.so. Also note that the linker by default adds the prefixlib to all library
names passed to it. Hencelib + vsftpd_v205_to_v205.so = libvsftpd_v205_to_v205.so.

The output of this re-linking process is the binary dynamic software update patch
libvsftpd_v205_to_v205.so.205, and this is the file used to apply a live update, as described in
Chapter 6.

29

Chapter 5. Preparing Dynamic Software Updates

Figure 5-10. Compiling a dynamic software update patch for vsFTPd from 2.0.4 to 2.0.5.

Compile the source dynamic software update patch to be dynamically updateable
bash$ hcucc.pl -fPIC \

-c vsftpd_comb.c_v204_to_v205.hcupatch.c \
-o vsftpd_comb.c_v204_to_v205.hcupatch.o \
--update-version=205

Create a binary dynamic software update patch as a dynamically loadable
shared object library
bash$ hcucc.pl -shared -Wl,-soname=vsftpd_v205_to_v205.so \

-o libvsftpd_v205_to_v205.so.205 \
vsftpd_comb.c_v204_to_v205.hcupatch.o

Warning

Unlike preparing updateable programs in Section 4.1, no "--base-version"

argument is supplied here. The dynamic software update patch is not the original
program: it is an update. When the patch is applied the original program is already
running.

30

Chapter 6. Applying Dynamic Software Updates

Applying dynamic software updates can be accomplished by invoking the toolhcuapply supplied with
a dynamic software update patch, as prepared inChapter 5.

An example of applying a dynamic software update to vsFTPd from version 2.0.4 to version 2.0.5 is
shown inFigure 6-1. The binary dynamic software update patchlibvsftpd_v204_to_205.so, which
was obtained inSection 5.5, is supplied as a parameter to thehcuapply tool.

Figure 6-1. Applying a dynamic software update for vsFTPd from 2.0.4 to 2.0.5

bash$ hcuapply --file=libvsftpd_v204_to_205.so \
--update-version=205

By default, the updating model that will be applied during the update is stack reconstruction. A lazy
updating model, in which functions are updated on entry, canbe requested with the argument
--update-model=lazy.

An alternative method of applying dynamic software patchesis using the API calls
HCU_STATIC_REQUEST_UPDATE_*(), as described inSection 4.3.

31

Chapter 7. System Internals

7.1. Function Call Indirection

Function calls are transformed to be executed using the well-known technique of pointer indirection. For
each functionf_v1, a global function pointer variablef_ptr is created that originally points to&f_v1.
Calls tof_v1 are transformed to calls to*f_ptr.

7.2. Thread Entry-Points

If the main() function or the start routine passed to apthread_create() attempt toreturn during
reconstruction they will terminate permanently. To allow the update ofmain() or thread entry points,
calls to such functions are initiated from a wrapper function.

7.3. Signal Handlers

The address of signal handlers, defined withsigaction() andsignal(), is stored inside the operating
system. To avoid resetting signal handlers when they are updated we initiate calls to them from a
wrapper function. Additionally, signal handlers interrupt at will the execution of a program at an
arbitrary point. They are incompatible with stack reconstruction and we instrument them to raise a flag
on entry and reset the flag before exiting. Requests to updateare rejected when a program is executing a
signal handler. They are immediately satisfied when the program switches again to normal execution
mode, and can update the signal handler code at that point.

7.4. Update Points

Update points are automatically inserted in points of execution in the original program that guarantee
immediate updates. They are inserted in the beginning of each function (inside the function), and the
beginning of each loop (inside the loop). The capability to update, if needed, at each iteration of a
long-running loop makes it possible to dynamically update programs from one algorithm to another
while taking advantage of the progress of the older algorithm.

Tip: A more aggressive transformation could insert update points in each basic block at the
source-code level. However, there would be little benefit in this approach since function calls and
loops are encountered sufficiently often to render update points in other basic blocks, like
if-then-else and switch statements, unnecessary.

32

Chapter 7. System Internals

It is possible to have update points selectively activated or disabled. The application programmer can
specify when requesting an update which update points should affect the update (e.g., all except points
250-259 and 262) and this information is stored in the dynamic updating runtime. This empowers the
programmer to use the updating mechanism to enforce additional general safety. After an update is
applied, all update points are disengaged. The current implementation is restricted to a coarse-grain
activation of update points by using a singlemust_update flag, but we plan to support more fine-grain
selective activation.

7.5. Exported Local Variables

Thedlopen() library call successfully loads a dynamic update patch if the patch references only global
variables. References to variables that were declared local in the original version (using thestatic
keyword) are not accessible after dynamic loading, leadingto system exceptions. The UpStare compiler
removes thestatic keyword from all local variables and exports them to global.

7.6. Multi-Threaded Updates

The difficulty in updating multi-threaded programs lies in safely coordinating the update timeliness.
When datatypes are updated by one thread, one of the remainingthreads may attempt to use code that
relies on the old representation of the datatype before it encounters an update point. We adapted an
algorithm that blocks all threads in heterogeneous checkpointing for multi-threaded applications for
dynamic updates. The idea is to force all but one thread to block when the application must update. The
one thread that is not blocked will be the coordinator of the update. It polls the status of the remaining
threads until it can tell for sure that all threads are blocked, as defined below.

When a thread reaches an update point and the application mustupdate, it raises a flag indicating that it is
willing to cooperateon the update and then attempts to acquire acoordination lock. The first thread to
acquire the coordination lock is thecoordinator of the update. The coordinator can tell that some threads
are blocked if their cooperation flags are raised. But this does not cover all threads. Some threads might
be blocked waiting on an application lock owned by a thread that is already willing to cooperate and that
is blocked on thecoordination lock To that end, the system needs to keep track of the blocking status of
various threads. Calls topthread_mutex_lock() andpthread_mutex_unlock() are replaced with
wrapper calls to keep track of the blocking status of threads. When a thread attempts to acquire a lock, it
adds the lock to aWANT list. When the lock is acquired, the lock is removed from theWANT list and
placed on aHAVE list. When the thread releases the lock, the lock is removed from theHAVE list.

The coordinator determines that a thread isreally blocked if:

• The thread is willing to update;

• The thread is blocked waiting on a lock owned by another thread that isreally blocked.

The coordinator keeps on checking the status of the other threads until it can determine that all other
threads arereally blocked, at which time the coordinator initiates the actual update:the stack of each

33

Chapter 7. System Internals

thread is fully unrolled; all datatypes are transformed; the stacks are reconstructed; and, the threads are
released to resume executing the updated version.

7.7. Multi-Process Updates

Multi-process applications whose multiple processes communicate with each other, such as processes
that use shared memory, signals, or pipes, still need to be updated immediately as a group to guarantee a
safe update.

The UpStare compiler automatically transforms calls tofork() into calls to the runtime system. The
runtime system traces the process hierarchy and when an update must be applied, stack unwinding and
reconstruction is coordinated to be atomic among all children, and their threads, of the application. It
also wraps calls towait() andwaitpid() to free memory used for process hierarchy tracing.

Tip: Supporting multi-process updates can be disabled by supplying the --no-multi-process

argument to the compiler.

7.8. Blocking System Calls

A single threaded or a multi threaded application may have a thread block on a system call, thereby
delaying the update. This is particularly problematic for multi-threaded applications since one thread
blocking on a system call may indefinitely delay the update ofthe code of another thread. That’s because
all threads need to be blocked by our system to update and we cannot tell how long a thread will block on
a system call. Examples include waiting to read user input, waiting to receive data from a network
socket, or writing to a file on disk. This indefinite blocking possibility exists because the thread waits to
acquire a lock, or is put to sleep on a queue inside the operating system kernel. We aim to provide an
updating solution that does not rely on the operating systemand as such refrain from instrumenting lock
acquisition and release inside the kernel.

We automatically transform applications to always issue I/O as a non-blocking operation that allows the
runtime system to regain control over execution. Blocking system calls that are handled include
accept(), read(), recv() andselect(). Blocking calls not yet handled includepselect(),
recvfrom(), andrecvmsg().

We automatically segment thesendfile() operation to smaller chunks to ensure the system call won’t
block indefinitely. Thewrite(), send(), and operations are not broken to smaller chunks yet.

Tip: Since there are some blocking system calls that the compiler does not handle yet, the compiler
will stop with an error if it encounters such blocking system calls. This behavior can be overriden by
supplying the argument --ignore-unsupported-blocking-system-calls. Disabling this

34

Chapter 7. System Internals

safeguard opens the possibility for a program to block indefinitely if an update is requested and the
program executes a blocking system call that does not return.

7.9. Dynamic Stack Tracing

Runtime safety checks are enforced by consulting information about the application call sequences (one
per thread) and the call site for every call in these sequences. This information is called the
context-sensitive call stack information. This information is available at any point during the execution
and is maintained using a dynamic stack tracing mechanism. Programs are instrumented to efficiently
and dynamically maintain their stack state at a high-level (source-code) and offer this information to the
dynamic software updating runtime environment to enforce safety checks before an update is applied.
The captured state is architecture (and operating system) independent.

The stack trace dynamically captures the names of functionsthat are active on the stack. For each
function that is active on the stack, the instrumentation also saves the execution point from which the
next stack frame was created when the callee function was called. The combination of function names
and their execution points provides an accurate context-sensitive call stack trace. The execution points
captured are equivalent to the continuation points described inSection 5.3.3. Using this call stack trace,
safety checks such as type-safety and transaction-safety can be enforced more accurately. Type-safety
can be enforced if type information is precomputed (statically) for every continuation point.
Transaction-safety can be enforced if a user forbids updates from being applied inside specific regions of
code which are active on the stack.

Warning

The overhead of dynamic stack tracing can be considerable. It is possible to have
the overhead be incurred temporarily: from the time an update is requested until
the time the update is applied. However, this support has not been implemented
yet.

35

