UpStare manual
RELEASE_0-12-9

Kristis Makris <mkgnu@mkgnu.net>

UpStare manual: RELEASE_0-12-9
by Kristis Makris<mkgnu@mkgnu.net

Published 2012-08-02

This is the documentation of UpStare, a system that can apphediate dynamic software updates in
multi-threaded userspace applications using stack ré&cmtisn.

Table of Contents

I o To 11 | SRR 1..
1.1, Copyright INFOMMALION.........ciiiiiiiiieiiii e e e neees 1
2 B 1o =1 =T TP PPPRRRR 2.
1.3. DOCUMENT CONVENTIOMS. ... iiiiiiiiiitieeee e e e ettt e e e et e e e e e e e e s nnbbbe e e e e e e e e e eaannnbeeneenaaanes 2
B2 11 7 To 18 Tox 1 o] o PP TP PUPPRPRY”
P2 o - Ll LS | O OO P P PPRPPPRTOPPRY”.
2.2. EXaMPIe UPALES.......vviiiiiiiiiie ettt eneee e
S INSTAITALION ... 6..
3L AVAIIADITILY ... 6.
3.2, INSTAIALION. ...ttt 6.
4. Preparing Updateable Programs............oo ittt e s 7
4.1. Invoking Wrapper BUild PrOgrams...........coocuviiiiiiee et ciiiiiees s eeesrneeesee e e s e s snnnneneeae e e e nnns 7.
4.2. Exporting DYyNnamic SYMDBOIS.cooiiiiiiiiii et 8...
G T Yo [0 1110 g F= LI o I = U 3R 8
4.4. Understanding The Compiler And ItS OPtioNS..........cooiiiiiiiiiiiiii e 10
5. Preparing Dynamic SOftware UPAteS.coouuiiiiiiiiieiiiiiie ettt 13
5.1. Preparing An Updateable Original VErsion. ..o 13
5.2. Preparing An Updateable NeW VErSION...........ccouiiiiiiiiiiiii e 13
5.3. Describing Dynamic Software UPALES...........oooiiiiiiiiiiiiiieeiiiee e 13
5.3.1. Describing FUNCiON UPAates..........cocuviiiiiiiiiiciiieee e 14
5.3.2. Describing Datatype UPates..........occuuviiiiiiiiieiiiiiee e 16
5.3.3. Describing Execution ContinUatiQn...............cooeiariiiiiiiiiiiieie e 17
5.3.4. Describing Update CONSIFAINTS.coiiiiiiiiiiiiiiiie e iee e e 22
5.4. Running The PatCh GENEIatOL............ceiiiiiiiiiiiiiiiiei et 24.
5.5. Compiling The Dynamic Software Update Patch..............cccuiiiiiiiiiiiiiiiecece 29
6. Applying Dynamic SOftWare UPCALtES.........ocooiiiiiiiiiiiiee ettt a e e e e 31
7. SYStEM INLEINAIS... ... 32
7.1. FUNCtion Call INAIM@CHION.........vveiiiiiiiie e eans 32
7.2. Thread ENntry-PoiNtS......ccooo oo 32
48 TS T [F= U o =T T L= R 32
A U o1 - L (= o T | =SSP 32
7.5. Exported LoCal VariabIEs..........ccoo i e et 33
7.6. Multi-Threaded UPAAteS.ccuuiiiiiiiiiie ettt e e e s 33
7.7. MUII-PrOCESS UPAALES.uviiiiiiiei ettt eeeeee e e e e e e e e s e st re e e e e e e e e ennnns 34
7.8. BloCKING SYStEM CallS........uviiiiiiieieii ettt e e e e e e e e e e e e ennes 34
7.9. DYNAMIC STACK TTACING .. eeieiiitiieee ittt ettt ettt e et e e et e e e 35

List of Figures
3-1. Forcing installation of RPM PaCKagES............uuiiiiiiiiiiiiiiiie ettt G..
3-2. Forcing installation of Debian packages............cooiiiiiiiiiiiiiie et 6..
4-1. Originalvakef i | @ for POSIGreSQL 7.4.16.......ccciiiiiieiiiiiieeieiieee et 1.
4-2.Makef i | e modifications for an updateable PostgreSQL 7.4.16..........ccccveeiiieeeeiiiiiiiiieeeeeeae 7
4-3. Test program that attempts to be updated inside a digmaller...............ccoooiiiiiiiinien, 9
4-4. Describing a compiler CoNfigUuIratiQn.............eeeiiiiiiii e 11
5-1. Describing function updates for vSFTPd from 2.0.4 3R...........cccoiiiiiiiiieeeeeen, 14
5-2. Transforming datatypes for vSFTPd from 2.0.4 t0 2.0.5. ... 16
5-3. Viewing the execution continuation pointsvaff _st andal one_nmai n in vsFTPd 2.0.4............. 18
5-4. Describing execution continuation when updating fi®abblesort to Heapsort....................... 19
5-5. Guarding against unintented reconstruction for vaFTR.1t0 1.1.2...........ccoeeeeiiiiiininnnnnnnn, 22
5-6. Describing update CONSIIAINLS.........cccie i 23
5-7. Preparing a dynamic software update patch for vsFTéid #.0.4t0 2.0.5..................oe 25
5-8. Patch generator report to update vsFTPd from 2.0.4t8.2...........ccooeeieiiieiiiieeeeeee, 25
5-9. Patch generator warnings for vSFTPd from 2.0.4 10 2.0.5.........cccoviiiieeeee e, 28
5-10. Compiling a dynamic software update patch for vsFTBihf2.0.4 t0 2.0.5.........ccccvvvverreeenn. 30
6-1. Applying a dynamic software update for vSFTPd from4210.2.0.5...........cccccvviveveeeeii i, 31

Chapter 1. About

1.1. Copyright Information

This system, including this document, is Copyright (C) 2006 by Kristis Mdakmkgnu@mkgnu.net
(mailto:mkgnu@mkgnu.net). In binary form produced and digitally sigspetifically by Kristis Makris, it is
freely distributed for personal and academic/research use. It isdi&dTbuted for commercial use. No other
binary forms can be distributed.

The source code and documentation, either in electronic or hardcopgtfanay not be used for any purpose
whatsoever without the written permission of Kristis Makris.

The CIL framework used by this system (but NOT the CIL modules writpert#ically for THIS system) is
under a different license (found in src/multi_threaded_updates/cil/NIEE). That license is reproduced
below:

Copyright (c) 2001-2007,

George C. Necul a <necul a@s. ber kel ey. edu>
Scott M Peak <sncpeak@s. ber kel ey. edu>
Wes Wi ner <wei mer @s. ber kel ey. edu>
Ben Liblit <liblit@s.w sc.edu>

Matt Harren <matth@s. berkel ey. edu>

Al'l rights reserved.

Redi stribution and use in source and binary forns, with or w thout
nmodi fication, are permitted provided that the followi ng conditions are net:

1. Redistributions of source code nmust retain the above copyright notice,
this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyright notice,
this list of conditions and the follow ng disclainer in the docunentation
and/or other materials provided with the distribution.

3. The nanes of the contributors may not be used to endorse or pronote
products derived fromthis software w thout specific prior witten
per m ssi on.

THI S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS "AS | S"
AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE
| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
ARE DI SCLAI MED. I N NO EVENT SHALL THE COPYRI GHT OWNER CR CONTRI BUTORS BE
LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR
CONSEQUENTI AL DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF
SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS

| NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THECRY OF LI ABILITY, WHETHER I N
CONTRACT, STRICT LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE)

ARI SING I N ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE
PGCSSI BI LI TY OF SUCH DANAGE.

Chapter 1. About

(See http://ww:. opensource.org/licenses/bsd-1icense. php)

1.2. Disclaimer

No liability for the contents of this document can be acceépk®llow the instructions herein at your own
risk.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTBRUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NO LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR APARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTA, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USETA/OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY QHABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NESLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE \EEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3. Document Conventions

This document uses the following conventions:

Descriptions Appearance

Warning |
Caution

Don't run with scissors!

Hint Tip: Would you like a breath mint?

Note Note: Dear John...

Information requiring special attention |
Warning

Read this or the cat gets it.

File or directory name fil ename
Command to be typed command
Application name application

Chapter 1. About

Descriptions Appearance

Normal user’s prompt under bash shell bash$

Root user’s prompt under bash shell bash#

Environment variables VARIABLE

Code example <par a>
Begi nni ng and end of paragraph
</ par a>

This documentation is maintained in DocBook 4.2 SGML format

Chapter 2. Introduction

2.1. What Is It?

UpStare is a system that can apply immediate dynamic saftwadates in multi-threaded programs. It
provides a compiler that applies high-level, source-torse transformations that make programs
dynamically updateable. It is implemented in OCaml usirgg@L v1.3.6 framework, C, and Perl, is
architecture and operating system independent, and hassheeessfully deployed on various
UNIX-like systems. Programmers only need to replace irrthiid process (e.g. Makefiles) calls to an
existing compiler likegcc to the UpStare compileh€ucc. pl).

UpStare can update applications while they are live andingnrithout stopping the application at all. It
achieves this goal by reconstructing the process stack jaaiating the program state in a single step.
This eliminates the possibility of an old version of the ctal®e executed on a newer version of a
datatype representation (a type-safety error). The updateapplied immediately, even in
multi-threaded programs. It is not necessary to wait indtefinfor a quiescent program state, such as
waiting for a program thread to receive data from a netwodksbbefore an update can begin. A
running algorithm can be updated midstream its executidir@sumed from a different point (not
necessarily the beginning) of another algorithm that issedrally equivalent: an algorithm that aims to
produce the same results while reusing existing progress.

2.2. Example Updates

Example updates that UpStare has been able to successfuijyont include:

- Recursion Updating an application recursively computing Fibonazainbers, while nested deep in
the stack, to report additional information when the reicursinwinds.

- Network Sockets Updating a server application while serving multiple oteewithout closing the
network socket.

- Multi-threaded Applications : Updating the main function body executed by multiple tdieaf an
application. Also, updating in a producer/consumer mhiteaded application only the consumer
threads while the producer threads remained unmodified.

« Multi-nested Long-Lived Loops: Updating in the middle of executing Bubblesort, a multstes
long-lived loop, to continue executing from the middle ofiiedtent multi-nested long-lived loop
implementing Selectionsort while reusing the existinggpaon state. Additionally, updating from
Bubblesort to Heapsort, which is a drastically differentisg algorithm executing over different loop
iterators.

- VSFTPd: Applying 13 updates spanning 5.5 years of the multi-pre¢esked processes do not
communicate) Very Secure FTP Daemon (about 12,000 linesdsf)c

Chapter 2. Introduction

- PostgreSQL Updating the multi-process (forked processes commusj¢zstgreSQL 7.4.16
database server (more than 200,000 lines of code).

Chapter 3. Installation

3.1. Availability

UpStare is available in binary format for UNIX-like systearsd has been verified to work on Linux
2.4-2.6 0n i386, Solaris 5.10 on SPARC, and Mac OS X on PowgeuBi6ig the compilergcc- 2. 95,
gcc-3.3,9cc-3.4,gcc-4.1,icc-8.0,icc-9. 1, andi cc- 10. 0. The project webpage
(http://[freshmeat.net/projects/upstare) contains thstmp to date information on the project, including
the latest release and manual.

A users mailing list is available for subscription (httfists.mkgnu.net/mailman/listinfo/upstare-users),
or simply for sending email (mailto:upstare-users@listgnu.net).

3.2. Installation

UpStare is available in the form of Debian and RPM packagks.provided packages are:

« upst ar e- syst ent The UpStare system. It includes the updateable compilatime system, patch
generator, and the tool that applies updates.

- upst ar e- doc: Documentation, including this manual.

- upstare-tests: The system tests which provide a large collection of exandghamic software
updates.

Tip: If you believe your system meets the package dependencies, but installing packages fails due to
missing dependencies, installation of the packages is still possible. Installation of RPM packages can
be forced as shown in Figure 3-1, and installation of Debian packages can be forced as shown in
Figure 3-2.

Figure 3-1. Forcing installation of RPM packages.

bash$ rpm-ivh --force --nodeps <RPM PACKAGE_NAME>

Figure 3-2. Forcing installation of Debian packages.

bash$ dpkg -i --force-depends <DEB PACKAGE NAMVE>

Chapter 4. Preparing Updateable Programs

Preparing updateable programs requires no source coddicatidns in existing programs and minimal
modifications to a program’s build process (evgkef i | e). Two types of modifications are necessary:

« Calls to an existing compiler, likgcc, must be changed to calls to the UpStare compileucc. pl .

- The flags supplied to a linker, liked, must be modified to allow dynamically loaded shared objects
(dynamic software update patches) to use the symbols ofuilttebimary.

Figure 4-1shows the originalakef i | e used for the PostgreSQL 7.4.16 database serveFiguie 4-2
shows the modifications needed to thisef i | e to prepare the PostgreSQL source code to become
updateableSection 4.1andSection 4.2xplain the modifications applied to thvakefi | e.

Figure 4-1. Original Makef i | e for PostgreSQL 7.4.16.

CcC
LD =1Id
AR ar
RANLI B
LORDER

gcc

ranlib
| order

LDFLAGS =

Figure 4-2.Makef i | e modifications for an updateable PostgreSQL 7.4.16.

cc

= hcucc. pl --nerge --keepnerged --update-version=7416 --base-version
LD = hcucc. pl --nerge --keepnerged --update-versi on=7416
AR = hcucil.pl --nerge --npde=AR
RANLI B = echo
LORDER = echo

LDFLAGS = -W, --export-dynam c

4.1. Invoking Wrapper Build Programs

The build process is modified to invoke wrapper programd) sisca wrapper compiler, a wrapper linker,
etc. These wrapper programs prepare updateable sourcebcodéth a twist: the o object files
produced do not contain binary code, but text source codan®the linking process, a wrapper linker

Chapter 4. Preparing Updateable Programs

performs whole-program merging and preparesanb. c file containing the source code of all object
files. This final source code is then prepared to be updateBieimplication of this whole-program
merging indirection is that some utilities used during thédprocess, besides the compiler and linker,
may also need to also be wrapped.

In Figure 4-2 the 'CC" variable, indicating the compiler used, needs to involelpStarencucc. pl
compiler. The arguments “ner ge - - keepmer ged" are necessary to perform whole-program
merging. The' - - updat e- ver si on=7416" argument is supplied to indicate the initial version(76.1
of the updateable program. The- base- ver si on" argument indicates that this is the original program
that will be started for the first time; future versions widt dynamically applied. TheLD" variable,
indicating the linker used, is redefined similar &C", but does not need the “'base- ver si on"
argument. TheAR" variable, indicating the library archiving utility useid,redefined in a similar way to
function in a wrapper mode. Finally, other variables, suehRANLI B" indicating the tool used to
generate an archive index, anddRDER" indicating the tool used to list dependencies of objecsfite
also modified. These variables are defining tools that aiedas input binary o object files, and are
redifined to not attempt to process binary input.

In this example, whole-program merging produces the file

post gresql - 7. 4. 16/ sr c/ backend/ post gr es_conb. ¢ which contains the source code of all linked
objects and the final object file is calledst gresql - 7. 4. 16/ sr c/ backend/ post gr es_conb. o.

The final binary file retains its original nampest gr esql - 7. 4. 16/ sr ¢/ backend/ post gr es.

4.2. Exporting Dynamic Symbols

In Figure 4-2 the 'LDFLAGS" variable, indicating the flags passed to the linker, is fiede to pass the
"-W, - -export-dynani ¢" argument, which allows a dynamically loaded shared ol{gectynamic
software update patch) to use the symbols in the built binary

4.3. Additional API Calls

Additional API calls are available for special preparatidrsource code to be updateable. These API
calls are commonly used to develop test programs that caomignate the capabilities of UpStare,
accurately test new features, and conduct experimentsamignsoftware updates of real-world
programs do not rely on these API calls.

The API calls require including the filecu_header s. h, and they are:

« HCU_STATI C_REQUEST UPDATE_| MVEDI ATE()

Insertion of this function call in a program forces a dynasoétware update to begin when this call is
issued. This is different than applying a dynamic softwgrdate when thacuappl y tool is invoked,
because there is no guarantee of which code the program mexebating when an update is

Chapter 4. Preparing Updateable Programs

requested witlhcuappl y. It is a way of initiating a dynamic software update pregisehen a
particular piece of code is executing during experimeaotati

Additionally, this function call means apply a dynamic safte update using the updating model of
stack reconstruction. An alternative option is to apply aaipic software update using the updating
model of update on function entry using tHeu STATI C REQUEST UPDATE_LAZY() call.

+ HCU_STATI C_REQUEST UPDATE_LAZY()

Insertion of this function call in a program means apply aaiyit software update lazily: update
datatypes, if possible, and update functions on functidryeDo not apply stack reconstruction.

« HCU_STATI C_UPDATE_FI LE(filenane, version)

If the dynamic software update will be initiated with any bét
HCU_STATI C_REQUEST_UPDATE_=* () calls, this call is used to inform the dynamic software updat
runtime of the filename the dynamic software update patctoied in, and the update version.

« HCU_MANUAL_UPDATE_POI NT()

This function call manually inserts an update point. Thisasnecessarily a point where an update
will begin.

Figure 4-3shows an example using these additional API calls to testi&chic software updates are
refused if a signal handler is executing. TH@&J STATI C_UPDATE_FI LE() macro is used in the top of
the program to define the name of the dynamic software updaté file.

HCU_STATI C_REQUEST UPDATE_| MVEDI ATE() is called to request an update insfdenct i onA()

which is called inside a signal handleicu_MANUAL_UPDATE_PO NT() is placed right after this call to
ensure an update point will be encountered and the dynarftigese update will be attempted. In this
example, the runtime detects the request for an updateauisdsshile a signal handler is executing and
refuses to apply the update at that point. Of course, thetapdgquest will be served as soon as the signal
handler exits. But in this example no other update pointéliencountered and the update will not be
applied at all.

Figure 4-3. Test program that attempts to be updated inside aignal handler.

#i ncl ude <stdio. h>

#i ncl ude <signal.h>

#i ncl ude "hcu_headers. h"

HCU_STATI C_UPDATE_FI LE(". /i bsi gnal _handl er _v1.c_v1 to_v2. hcupatch.so.2", 2);

void functionA()

}

Chapter 4. Preparing Updateable Programs

printf("functionA vl entered\n");
HCU_STATI C_REQUEST_UPDATE_| MVEDI ATE() ;
HCU_MANUAL_UPDATE_POI NT() ;
printf("functionA vl exited\n");

voi d signal _handler(int s)

{

}

{

printf("signal _handl er_v1l executed\n");
functionA();

int main()
if (signal (SIGUSRL, signal_handler) == SIGERR) {
perror("There was an error setting the signal handler:");
exit(-1);
}

kill(getpid(), SIGUSRL);
printf("Signal handler test exiting\n");

return O;

4.4. Understanding The Compiler And Its Options

The compiler of updateable programsucc. pl is a wrapper that invokes the compiler driver
hcubasi c. pl with various options. By defaulbcucc. pl enables all of the features needed to build
updateable programs. However it is possible to invoke tinepiler driver by enabling only some of
these features, which is useful in preparing updateablgranos with different capabilities. Enabling
only some features can be useful in measuring the perforenaingpdateable programs.

Tip: Note that a lot of the compiler features offer additional options. For a complete list of compiler
options run hcubasi c. pl - - hel p.

The mandatory compiler features that must be enabled t@pregpdateable programs are:

Enabling common functionality for updating, enabled with the parameter doConmonUpdat e.

Initializing the dynamic update runtime environment, enabled with the parameter
--dolnitializeRuntime.

Automatically inserting update points, enabled with the parameterdol nsert Updat ePoi nt s.

10

Chapter 4. Preparing Updateable Programs

- ldentifying thread entry-points, signal-handlers, and functions passed as parameters to librarigs
which need special support to be updated properly, enabitbdive parameter- dow apCal | s.

In addition to the mandatory compiler features, the follogvieatures are enabled by default. These
features are optional:

- Converting blocking system calls to non-blockingenabled with the parameter
- - doBl ocki ngSyst entCal | Conver si on.

« Supporting updates of multi-threaded and multi-process pograms, enabled with the parameter
--doMul ti Thr eadedUpdat es.

- Preparing programs to be updateable using stack reconstru@n, enabled with the parameter
--doSt ackReconstructi on.

- Applying dynamic stack tracing to enforce runtime safety constraints, enabled with thamater
--doDynam cSafety.

Other optional features useful in debugging the compildudher directing the compiler are:

- Marking some functions as non-updateableenabled with the parameterdoConf i gur ati on
--conpi l er-configuration-file=<fil enanme>. It requires the compiler configuration file
supplied to define a variable of the datatype:

« hcu_conpil er_configuration_t

This datatype defines a structure with one variable: an afréynction names that should not be
instrumented for stack reconstruction.

Figure 4-4shows an example compiler configuration file.

Figure 4-4. Describing a compiler configuration.

#i ncl ude "hcu_conpil er_configuration.h"
hcu_conpi l er _configuration_t conpiler_configuration = {

/* non_updat eabl e_functions */
{
"cash_cnp",
"on_exit _reset",
"sngr_redo",
"b64_dec_ | en",

" Set Def aul t O i ent Encodi ng",
"Int_yy init_buffer",

11

Chapter 4. Preparing Updateable Programs

"restriction_is_or_clause"

}
s

Warning

Marking some functions as non-updateable can lead to breaking
stack-reconstruction if a callee function returns to a non-updateable function.
This feature should only be used with a clear understanding of its
implications.

Trace program executionat the source-code level, enabled with the parameter
- -doExecuti onTr ace. This option can be useful in debugging the compiler.

Print a control-flow graph in dot (Graphviz) format, enabled with the parametedoPr i nt Dot .
This option can be useful in understanding the control floa pfogram.

12

Chapter 5. Preparing Dynamic Software
Updates

Preparing dynamic software updates requires the competee code of the original, updateable
program, and the complete source code of the newer versiprogfam. Using the original and new
versions, a dynamic software update patch can be prepairggthehcu_bui | d_pat ch. sh patch
generator.

The next sections describe in detail how a dynamic softwpdate patch can be prepared. Both the
original and newer source code of a program need to be firspibetnas if they were being prepared to
be updateableSection 5.1Section 5.2 This will result in producing whole-program merged vers

of the source code, which are needed by the patch generafite.describing possible execution
continuation mappingsSection 5.3.3from the old version to the new version must also be prepayed
the user. The patch generat&egtion 5.4 produces the dynamic software update patch in source code,
and the patch is then compile8€ction 5.5 to a binary dynamic software update patch as dynamically
loadable shared object.

5.1. Preparing An Updateable Original Version

The original version of the program is prepared as desciib&hapter 4In this example, preparing an
updateable vsFTPd version 2.0.4 produces the §ife pd- 2. 0. 4/ vsft pd_conb. c.

5.2. Preparing An Updateable New Version

The new version of the program is also prepared as descnligldapter 4 This updateable version of the
program will never be run. The program must be prepared aateghle to produce the whole-program
merged source code of the program, which will be supplietiégatch generator. In this example,
preparing an updateable vsFTPd version 2.0.5 produceddhafit pd- 2. 0. 5/ vsft pd_conb. c.

5.3. Describing Dynamic Software Updates

For every dynamic software update patch that will be produadile must be provided that describes
how the update should be applied. This file describes:
- Which functions will be updated.

- Which global variables and which datatypes will be updatemteNhat a datatype update affects
functions that use that datatype.

- How program execution should continue after an update iBexpp

13

Chapter 5. Preparing Dynamic Software Updates

- Runtime update constraints.

These four items are described next.

5.3.1. Describing Function Updates

The functions that should be updated need to be describéé tynamic software update runtime.
Figure 5-1shows an example describing the updated functions whertingdesFTPd from version
2.0.4 to version 2.0.5.

Figure 5-1. Describing function updates for vsFTPd from 2.04 to 2.0.5.

#i ncl ude "hcu_mappi ngs. h"

hcu_mappi ng_updat e_descri ption_t mappi ng_updates_v2[] ={ { "main", "main" } };
hcu_mappi ng_functi on_update_description_t nmapping_function_updates_v2[] = {
{ "str_locate_text_reverse", "str_locate_text_reverse", 0 },

{ "emt _greeting", "emt _greeting", 0 },
{ "handl e_l ogin", "handle_login", 0 },
{ "str_locate_chars", "str_locate_chars", 0 },
{ "vsf_privop_do_l ogin", "vsf_privop_do_login", 0},
{ "vsf_renove_uwt np", "vsf_renove_uwtnp", 0 },
{ "handle_retr", "handle_retr", 0},
{ "vsf_sysutil_connect _timeout", "vsf_sysutil_connect_tineout", 0 },
{ "handl e_upl oad_common", "handl e_upl oad_conmon", 0 },
{ "handl e_user_conmand", "handl e_user_command", 0 },
{ "main", "main", 1},

{ "handl e_ndtni, "handle_ndtn, 0 }

{ "handl e_size", "handl e_size", 0},

{ "vsf_insert_uwtnp", "vsf_insert_uwnp", 0},

{ "handl e_feat", "handle_feat", 0 },

{ "str_locate_text", "str_locate_text", 0},

{ "get _unique_filenane", "get_unique_filenane", 0 },

{ "vsf_sysutil _chroot", "vsf_sysutil_chroot”, 0 },

{ "vsf_sysdep_check_auth", "vsf_sysdep_check_auth", 0 },

{ "vsf_sysutil _tzset", "vsf_sysutil_tzset", 0},

{ "handl e_pass_commuand", "handl e_pas_command", 0 },

{ "vsf_|s_populate_ dir_list", "vsf_|s populate_dir_list", 0}
{ "calc_numsend", "calc_numsend", 0 },

{ "handl e_stat", "handle_stat", 0 },

{ "vsf_privop_do_file_chown", "vsf_privop_do_file_chown", 0 }

}s

The description file defines two variables of two key datasype

« hcu_mappi ng_updat e_descri ption_t

14

Chapter 5. Preparing Dynamic Software Updates

This datatype defines an array of threads that should be eghdane variable declaration of this
datatype is required.

Since vsFTPd is a single-threaded program, this array mmntaly one entry. The entry requests that
the thread calledsi n (the thread whose entrypoint function is the function ahiftei n()) will have
its stack reconstructed, when updated, all the way up touhetion calledrai n() .

Tip: It would be possible to request for this thread to be have its stack partially reconstructed: to

unwind up to one of the callees of the mai n() function instead of unwinding all the way up to the
mai n() function. This could be useful as an optimization that minimizes the updating latency in a
deeply recursive program. But for most programs unwinding the stack up to the thread entrypoint
would have little impact in the total updating latency.

hcu_mappi ng_functi on_updat e_descri ption_t

This datatype defines an array of functions that should batepdOne variable declaration of this
datatype is required.

Each definition of a function update consists of three fi€ldi® name of the function that will be
updated (from the original source code), the name of thetimmthat will take its place (from the new
source code), and a flag indicating whether the originaltfanavas a thread entrypoint.

Thread entrypoints are thmai n() function, functions that are passed as arguments to a
pt hread_cr eat e(), and signal handlers defined withgnal () andsi gaction().

Since vsFTPd is a single-threaded program, the entry totapdamai n() function is flagged as a
thread entrypoint.

15

Chapter 5. Preparing Dynamic Software Updates

Warning
But wait! How did a user produce the list of function updates?

The patch generator, described in Section 5.4, can produce the list of modified
functions when invoked with empty variable definitions of the two required
datatypes hcu_mappi ng_updat e_descri ption_t and

hcu_nappi ng_f uncti on_updat e_descri ption_t. It is expected that a user will
first run the patch generator to produce the list of function updates, and then
manually produce the update description file.

But why? Isn’t the patch generator capable of producing the entire update
description file?

The patch generator can produce the entire update description file, but that would
be presumptuous. Producing the entire list of function updates in the file would
guarantee that a program is representation consistent: the running version
matches the source code. However, the user may not desire an update to be
representation consistent for various reasons. A user may want to apply an update
to only a small collection of functions. For example, the user may want to apply a
security fix or to avoid introducing, as part of the update, additional known defects
that are present in the updated version of the program.

Conclusion: Allowing users to manually produce a customized update description
file separates policy from mechanism in the patch generator.

There are plans to enhance the patch generator to produce a template update
description file that the user may customize to produce the final file.

5.3.2. Describing Datatype Updates

Datatype updates can affect both global variables and \@&bles in functions that use the datatype.
Datatype updates are automatically produced by the pateérgr as described Bection 5.4To
complement incomplete datatype updates a user can mamuélydatatype transformers in the
mappings file. Datatype transformer names must containpibeia prefix

HCU_dat at ype_t ransf or mati on__ and to be invoked from the special function

HCU_dat at ype_transformati ons_function_.

For example, thear seconf _ui nt _array variable is an array than has had its size extended in the
newer version 2.0.5. The values of this array are preservétiupdated
par seconf _ui nt _array_v205 variable for version 2.0.5, as shownhkigure 5-2

16

Chapter 5. Preparing Dynamic Software Updates

Figure 5-2. Transforming datatypes for vsFTPd from 2.0.4 t02.0.5.

voi d HCU dat atype_transformati on__struct__parseconf_uint_setting__arraysizel7_to_struct__

{

}
}

int HCU datatype_transformati ons_function()

{

I ong array_counter ;

{
array_counter = 0;
while (1) {

HCU_dat at ype_transformati on__struct __parseconf_uint_setting__arraysi zel7_to_struct__j

if (array_counter >= 17 - 1) {
br eak;
}

array_counter ++;

}

/'l Miust extend the array

/1 NOTE: The followi ng 11 statenents are not automatically generated yet
((*new)[16]).p_setting_nane = nalloc(strlen("delay_failed_login") + 1);
mencpy(&((*new)[16]).p_setting_nane, "delay_failed_|login" "\0", strlen("delay_failed_l«¢
((*new)[16]).p_variable = & unabl e_del ay_failed_| ogin;

((*new) [17]).p_setting name = malloc(strlen("delay_successful login") + 1);
mencpy (& (*new)[17]).p_setting_nane, "delay_successful _|ogin" "\0", strlen("del ay_succe
((*new)[17]).p_variabl e = & unabl e_del ay_successful _| ogi n;

((*new)[18]).p_setting_nanme = nalloc(strlen("max_login_fails") + 1);
mencpy(&((*new)[18]). p_setting_nane, "nmax_login_fails" "\0", strlen("max_Il ogin_fails")
((*new)[18]).p_variable = & unabl e_max_| ogin_fails;

((*new)[19]).p_setting_nane = O;
((*new)[19]).p_variable = O;

attribute ((__HCU ATTRI BUTE_NON_UPDATEABI

HCU _dat at ype_transformati on__struct __parseconf_uint_setting__arraysizel7_to_struct__pal

/1 NOTE: The following 3 statements are not automatically generated yet
tunabl e_delay failed_login = 1;

tunabl e_del ay_successful _l ogin = 0;

tunabl e_max_l ogin_fails = 3;

printf("HCU datatype_transformati ons_function_v205 executed\n");
return (0);

17

Chapter 5. Preparing Dynamic Software Updates

5.3.3. Describing Execution Continuation

UpStare is able to update a running algorithm midstreanmxaswion and resume from a different point
(not necessarily the beginning) of another algorithm thdtghaviorally equivalent: an algorithm that
aims to produce the same results while reusing existingrpssg This capability requires user assistance.
A user needs to define the mapping of continuation pointsedrotiginal program to continuation points

in the new version.

Continuation points are uniquely identified with an integeumeration starting from 0 for every
program function. This enumeration is embedded.imid . c file which contains the updateable source
code. The continuation points of each function are enuradriatthe beginning of the function (though
the function name now includes the postfixxxX, where XXX is the version number) aase
statements in a bigwi t ch statement.

Tip: There are plans to improve the identification (not the selection) of continuation points to use
strings rather than numeric ids. This will further minimize the input needed by a user in defining
continuation mappings.

For example, for vsFTPd 2.0.4 the update source code isq@@pavsft pd- 2. 0. 4/ vsftpd.cil . c.
To view the continuation points of functiorsf _st andal one_nmai n, a user should look at the big
swi t ch statement in the beginning of functiesf _st andal one_nai n_v204, which is shown in part
in Figure 5-3

Figure 5-3. Viewing the execution continuation points of/sf _st andal one_mai n in vsFTPd 2.0.4.

struct vsf_client_launch vsf_standal one_nai n_v204(voi d)

{

switch (__cil_tnmp20) {

case O:

got o vsf_standal one_nmi n_entrypoint;
case 1:

goto hcu_try_ to_update_1_after;

case 2:

goto vsf_sysutil _get_ipaddr_size_ 2 after;
case 3:

goto die_3 after;

case 4:

goto vsf_sysutil _fork_4 after;

18

Chapter 5. Preparing Dynamic Software Updates

Figure 5-4shows an example describing execution continuation wheating Bubblesort and
continuing execution with Heapsort.

Figure 5-4. Describing execution continuation when updatig from Bubblesort to Heapsort.

#i ncl ude "hcu_nappi ngs. h"
#i ncl ude "hcu_headers. h"

hcu_mappi ng_updat e_descri ption_t mappi ng_updates v2[] ={ { "main", "main" } };
hcu_mappi ng_functi on_update_description_t mapping_function_updates_v2[] = {

{ "ITBi n“; nn.ai nu, 1 }
b

hcu_mappi ng_al gorit hm c_equi val ence_t nappi ng_equi val ence_v2_bubbl esort[] = {
{ "bubbl eSort",
"heapSort",
1,
{{2 1}1}
}
b

struct hcu_stack_l ocal _bubbl eSort_v1 s {
int i ;
int j ;
int temp ;
struct hcu_stack frame_fields_s hcu_stack_frane_fields ;

b

struct hcu_stack_l ocal _heapSort_v2_s {
int i ;
int temp ;
struct hcu_stack frame_fields_s hcu_stack_frane_fields ;

}s

struct hcu_function_fornmal _heapSort_v2_s {
int *nunbers ;
int array_size ;

}s

voi d HCU stack_transformer__heapSort(void *transformstack_to ,
void *transform stack from,
void *transform parans_to)

struct hcu_stack_l ocal _heapSort_v2_ s *stack_to ;
struct hcu_stack | ocal bubbleSort vl s *stack from;
struct hcu_function_formal _heapSort_v2_ s *parans_to ;

stack_to = (struct hcu_stack_| ocal heapSort_v2 s *)transformstack to;
stack_from = (struct hcu_stack_| ocal _bubbleSort_v1l s *)transformstack from

paranms_to = (struct hcu_function_formal _heapSort_v2_s =*)transform parans_to;

/* Continue the heapsort algorithmfromthe current iteration (redo
the last iteration). Don't restart it from scratch.

19

Chapter 5. Preparing Dynamic Software Updates

Qur bubbl eSort inplenmentation processes an array fromthe
end. Thus we sinply have to shrink the array size to define the
new bounds of the array for heapSort. =x/
parans_to->array_size = stack_from> + 1;
hcu_copy_stack_frame_fiel ds(&stack_t o->hcu_stack_frame_fi el ds,
&stack_from >hcu_stack_franme_fields);

The description file defines a variable of an important daety

« hcu_mappi ng_al gori thm c_equi val ence_t

This datatype defines an array of behaviorally equivalemttions.

In each array element, the first parameter is the name of tiatiéun that will be updated,

bubbl eSor t . The second parameter is the name of the behaviorally dgoiMainction from which
execution will continuet{eapSor t) when it is time for the stack of the original function

(bubbl eSort) to be reconstructed. The third parameter reports the nuofleéements in the fourth
parameter, which is an array. Each element of this arraytle update point number of the original
function (update poin2 from bubbl eSor t) and a continuation point in the new functidre@pSor t)
from which execution should resume.

The description file also defines a stack-state transforimamtill allow Heapsort to continue execution
from where Bubblesort stopped, reusing the current progttate. The transformer name must contain
the special prefixiCU_st ack_t r ansf or mer __ and accepts three special parameters:

- void *transform_stack_to

A pointer to the stack of the new functidreapSort .

- void *transform_stack from

A pointer to the stack of the old functidrubbl eSort .

- void *transform_params_to

A pointer to ast r uct variable that groups the formal parameters of the new fanétéapSort .

Thest ruct definitions for the stack of the old and new functions, andidimal parameters of the new
function also need to be defined. These definitions can alpoduticed by the patch generator, as
discussed irsection 5.3.1The stack-state transformer invokes a special functiahgheserves
bookkeeping information maintained by the runtime:

20

Chapter 5. Preparing Dynamic Software Updates

« hcu_copy_stack frane fields(from to)

Preserves the execution continuation point in the stackehew function. Executing this function
within a stack-state transformer is required.

Tip: So what happens in this example?

The stack of the updated function heapSort does not have state preserved from the stack of the old
function bubbl eSor t at all. The stack of the old function is only consulted to change the formal
parameters of the new function, and the stack of the new function remains uninitialized. Essentially,
the new function continues execution by taking as input a smaller array of numbers to be sorted: it
continues sorting from where Bubblesort stopped.

21

Chapter 5. Preparing Dynamic Software Updates

Warning

Unintentional reconstruction. Section 5.3.2 and this section showed that
functions supplied by the user can transform datatypes and stack frames. These
functions may need to call helper functions of the old version of the application to
prepare data structures.

But these functions are called when the application itself is under stack
reconstruction. A call to any of its functions results to that function attempting to
re-reconstruct its stack, which is not what the transformer intented to do. To guard
against this behavior, calls to such functions need to:

« First, call hcu_set _updat e_node_of f (), which disables stack
reconstruction.

» Second, call the function they need.

« Third, call hcu_set _updat e_node_on(), which enables stack
reconstruction.

Figure 5-5 shows an example stack transformer updating vsFTPd from version
1.1.1 to version 1.1.2 that requires allocating two hash tables using calls to
hash_al | oc.

Figure 5-5. Guarding against unintented reconstruction for
vsFTPd 1.1.1to 1.1.2.

voi d HCU stack_transformer__vsf_standal one_nai n(voi d *ftransformstack _to ,
voi d =g ransform stack_from
voi d *fgransformparans_to

{ struct hcu_stack_| ocal _vsf_standal one_nain_v112_s *i ack_to ;

struct hcu_stack_l ocal _vsf_standal one_main_v111l_ s =gtack_from;
struct hcu_function_formal vsf_standal one_main_v112 s *parans_to ;

/1 Automatically generated transformations follow...
/1

/1 Manual transfornation that calls application fungtions
hcu_set _update_node_of f () ;

s_p_i p_count _hash = hash_al | oc(256U, sizeof(struct sf_sysutil _ipv4addr
& hash_ip);
s_p_pid_i p_hash = hash_al | oc(256U, sizeof(int), siZeof(struct vsf_sysut
& hash_pid);

hcu_set _updat e_node_on();

5.3.4. Describing Update Constraints

Defining update constraints can help reduce the amounttefttat needs to be mapped from the old

22

Chapter 5. Preparing Dynamic Software Updates

version of an application to the new version. Depending erufidating model used, defining update
constraints can also help enforce runtime safety.

If the updating model requested is to apply updates lazilg,aften necessary to define constraints that
enforce type-safety and transaction-safety. The lazytipglenodel is enabled either using the
HCU_STATI C_REQUEST_UPDATE_LAZY() call or by invoking the toohcuappl y with the

command-line parameterupdat e- nodel =I azy.

Tip: Defining update constraints for type-safety is not necessary if the updating model requested is
to apply updates immediately.

However, defining update constraints for transaction-safety can be useful both for applying updates
immediately and lazily.

Figure 5-6shows an example describing update constraints.

Figure 5-6. Describing update constraints.

#i ncl ude "hcu_mappi ngs. h"
#i nclude "hcu_safety_constraints. h"

hcu_safety_constraint_t hcu_safety_constraints_v2[] = {

{ "main",
"functionA",
1,
{ { _11 _1‘ 0} }
}

}s

The description file defines a variable of an important daexty

* hcu_safety_constraints_t

This datatype defines an array of update constraints.

For each array element, the first parameter is the name a@fdtme which the constraints should be
enforced. The second parameter is the name of function éareifpuested thread on which the
constraints should be enforced. The third parameter isuhger of elements in the fourth parameter.
The fourth parameter is an array of update constraints jortifve normal form. For example, the
constraint:

(a] b) &

23

Chapter 5. Preparing Dynamic Software Updates

should be expressed as:
c&al c&b

This means one should declare an array with two elementkelfirst element one should add the two
items:c a. In the second element one should add the two itemis: For each constraint definition,
there are three parameters

- The minimum execution point allowed for a valid update. Extem must have passed this point to
match the constraint.

Note that a minimum of -1 is special and meangwhere (starting from the beginning of the
function).

- The maximum execution point allowed for a valid update. Exien must have not yet encountered
this point to match the constraint.

Note that a minimum of -1 is special and meangwhere (until the end of the function).

- Whether this constraint is a negation (NOT).

Tip: So what happens in this example?

The constraint prohibits updates anywhere inside the function f unct i onA for the nai n thread.

5.4. Running The Patch Generator

Thehcu_bui | d_pat ch. sh patch generator is invoked to produce a dynamic softwarategshtch in
source code format. The patch generator compares the oldeandersions of a program, identifies their
differences, and taking into consideration the dynamicatgdescription provided by the user it
produces a patch.

Figure 5-7shows an example of running the patch generator to produgeac software update patch
that can update vsFTPd version 2.0.4 to version 2.0.5. Ttud generator requires the following
parameters:

« The whole-program merged source code of the original versisf t pd- 2. 0. 4/ vsft pd_conb. ¢
from Section 5.1

24

Chapter 5. Preparing Dynamic Software Updates

- The name of the old version (204).

« The whole-program merged source code of the new versioit pd- 2. 0. 5/ vsft pd_conb. ¢ from
Section 5.2

- The name of the new version (205).
- The file describing the update.(0. 4_to_2. 0. 5_nmappi ngs. ¢ from Section 5.3.3

- The version number the original program (204) was runningmibwas first started. This can be
different than the old version, if for example a programtsi@iat version 1.2.0, was updated several
times, and now an update is prepared between 2.0.4 and 2.0.5.

- Avyes/ no flag indicating whether the patch should support dynamickstacing.
« Avyes/ no flag indicating whether the patch should support blockirgjesy calls.

Figure 5-7. Preparing a dynamic software update patch for v6TPd from 2.0.4 to 2.0.5.

bash$ hcu_bui |l d_pat ch. sh \
vsftpd-2.0.4/vsftpd_conb.c 204 \
vsftpd-2.0.5/vsftpd_conb.c 205 \
2.0.4_to_2.0.5 _mappings.c 204 \
yes yes

The patch generator produces a dynamic software update ipegource code format

(vsftpd_conmb. c_v204_to_v205. hcupat ch. ¢). It also produces a report of differences between the
original version 2.0.4 to the new version 2.0Figure 5-8shows parts of this report for vsFTPd as an
example. The report lists the additions and updates of bi@saand functions.

Figure 5-8. Patch generator report to update vsFTPd from 2.04 to 2.0.5.

variable 's_p_statbuf ___ 6" not found in file 'vsftpd-2.0.4/vsftpd_conb.c.hcudiff.c'. It

vari abl e 'tunabl e_del ay_successful _login" not found in file "vsftpd-2.0.4/vsftpd_conb.c.!
variable "envtz' not found in file "vsftpd-2.0.4/vsftpd_conb.c.hcudiff.c’. It is an addet
variabl e "tunable_max_l ogin_fails’ not found in file ’vsftpd-2.0.4/vsftpd_conb. c. hcudi ff.
vari abl e 'tunabl e_delay_failed_login’ not found in file "vsftpd-2.0.4/vsftpd_conb. c. hcudi

vari abl e ' parseconf_uint_array’ has HAD its definition updated. It is an updated vari abl ¢

function 'str_locate_text_reverse’ has HAD its definition updated. It is an updated funct
function "enit_greeting’ has HAD its definition updated. It is an updated function
function "handle_login’ has HAD its definition updated. It is an updated function.
function ’str_locate_chars’ has HAD its definition updated. It is an updated function.
function ’"vsf_privop_do_login’ has HAD its definition updated. It is an updated function.
function ’vsf_renmove_uwtnp’ has HAD its definition updated. It is an updated function.
function 'handle_retr’ has HAD its definition updated. It is an updated function
function ’'vsf_sysutil _connect _tineout’ has HAD its definition updated. It is an updated f
function *handl e_upl oad_conmmon’ has HAD its definition updated. It is an updated functi or
function ' handl e_user_comuand’ has HAD its definition updated. It is an updated function.
function "main’ has HAD its definition updated. It is an updated function.

function "handl e_ndtmi has HAD its definition updated. It is an updated function

25

Chapter 5. Preparing Dynamic Software Updates

function 'handl e_size’ has HAD its definition updated. It is an updated function.
function ’vsf_insert_uwtnp’ has HAD its definition updated. It is an updated function
function "handl e_feat’ has HAD its definition updated. It is an updated function
function ’str_locate_text’ has HAD its definition updated. It is an updated function
function ’get_unique_filename’ has HAD its definition updated. It is an updated function.
function ’'vsf_sysutil _chroot’ has HAD its definition updated. It is an updated function
function ’vsf_sysdep_check_auth’ has HAD its definition updated. It is an updated functi
function ’'vsf_sysutil _tzset’ has HAD its definition updated. It is an updated function.
function *handl e_pass_conmmand’ has HAD its definition updated. It is an updated function.
function 'vsf_|s_populate_dir_list’ has HAD its definition updated. It is an updated fun
function 'calc_numsend has HAD its definition updated. It is an updated function
function 'handl e_stat’ has HAD its definition updated. It is an updated function
function ’'vsf_privop_do file_chown’ has HAD its definition updated. It is an updated fun

Diff Report:

Added 0 0. 00
Del et ed: 0 0. 00
Updat ed: 1 0.14
Sane: 693 99. 86
Tot al : 694 100. 00
Variabl e definitions:
Added: 5 2.14
Del et ed: 0 0. 00
Updat ed: 1 0.43
Sane: 228 97.44
Tot al : 234 100. 00
Function definitions:
Added 0 0. 00
Del et ed: 0 0. 00
Updat ed: 25 4.82
Sane: 494 95.18
Tot al : 519 100. 00

Patch format. The dynamic software update runtime requires that patohiesin three special

functions. These functions are invoked by the runtime atisppoints during an update to coordinate its

successful application. They are used to apply datatypatapdto apply function updates, and to
provide a description of the update. Besides generatirggthenctions, the patch generator also
automatically produces datatype and stack-state transfst

The three special functions expected by the runtime are:

26

Chapter 5. Preparing Dynamic Software Updates

« int HCU update_description_function()

Invoked before the update is attempted to describe to themwampossible execution continuations and
which threads will be updated.

« int HCU datatype_transformations_function()

Invoked after unwinding the old stack and before reconsitigche new stack to transform the
datatypes of global variables and to set values for new tji@b&bles.

e int HCU function_updates_function()

Invoked after unwinding the old stack and before reconsitrgehe new stack to update functions to
use their new versions.

This capability is used to execute code that will allow upddunctions to take control over the
program execution of the old version.

These special functions are automatically produced by ditehpgenerator. The functions can be
overriden by the user by supplying different definitionstia thappings file
(2.0.4_to_2.0.5_mappi ngs. c). If alternate definitions are found in the mappings filentti@ose
definitions are used instead of the ones the patch generatdd\wave produced.

There are two reasons a user may want to provide alternatetiefs of these functions. First, if the
user wants to manually create patches, or produce them pitiich generator the user writes, and
generally experiment with the runtime. Second, if it is itiféeed that the patch generator produces
incomplete or incorrect definitions.

Tip: An effective practice is to use the patch generator to create a patch, identify which transformers
may be incomplete, to complement them, and then to copy them in the mappings file. This new
mappings file that is now more complete is then used to run the patch generator again. The goal is to
produce a mappings file that fully describes the update, so that generating and applying patches
becomes a fully automatic process.

27

Chapter 5. Preparing Dynamic Software Updates

Warning

The patch generator currently does not automatically produce statements that set
the values of new variables, such as the values of the variables

tunabl e_del ay_| ogi n, t unabl e_del ay_successful _I ogi n, and

t unabl e_max_| ogi n_f ai I s shown in Figure 5-2. There are plans to implement
this feature.

Datatype transformers. The patch generator produces transformers that autatptiansfer the
existing values of old variables to the updated variabléss Works well when &t r uct is extended to
have an additional field. It also automatically preservesesdatatype conversions such as friom to

| ong. Finally, it automatically preserves arrays that havertbigie increase by producing a transformer
that copies all previous array values to the new array vegiab

When the patch generator encounters a datatype transfomitatiannot reason about, or a new field
which should be initialized by the programmer it reports anireg, as shown ifrigure 5-9

Figure 5-9. Patch generator warnings for vsFTPd from 2.0.4a 2.0.5.

WARNI NG HCU_stack_transformer__handl e_al arm tineout(): Don’t know how to accurately pres
WARNI NG HCU stack_transforner__handle_io():Don’'t know how to accurately preserve the fi¢
WARNI NG HCU_stack_transformer__handl e_sigal rm(): Don’t know how to accurately preserve ti
WARNI NG HCU_stack_transforner__handl e_sigurg():Don’t know how to accurately preserve the
WARNI NG HCU_st ack_transfornmer__handl e_upl oad_common(): Don’t know how to accurately pres
WARNI NG HCU_st ack_transformer__handl e_upl oad_conmon(): Unable to match an int definition
WARNI NG HCU_stack_transforner__handl e_upl oad_common():Field "tnp___ 4" of type 'int ' is
WARNI NG HCU _dat at ype_transformation__struct __vsf_session_v204__ to_struct__vsf_session_)
WARNI NG HCU stack_transforner__vsf sysdep_check _auth():Field "tnp___ 1" of type ’'char cor
WARNI NG HCU_stack_transformer__vsf_sysutil _tzset():Field "retval’ of type "int ' is a ne
WARNI NG HCU stack_transforner__vsf_sysutil _tzset():Field 'tzbuf’ of type ’char [sizeof ('
WARNI NG HCU_stack_transformer__vsf_sysutil _tzset():Field "tnp’ of type 'long ' is a new
WARNI NG HCU_stack_transformer__vsf_sysutil _tzset():Field "tnp__ 0" of type ’'unsigned int

If the user provides custom datatype transformers in thepingp file, the patch generator produces the
custom transformers in the patch.

Stack transformers. For functions that are not modified, the dynamic softwardat runtime
automatically preserves their stack withweecpy() call. Thus the patch generator does not produce
stack transformers for them. For functions that are not fremtibut have the datatypes of their local
variables updated, the patch generator automaticallyymesistack transformers that invoke the
appropriate datatype transformers.

28

Chapter 5. Preparing Dynamic Software Updates

If the user provides custom stack-state transformers imidngpings file, the patch generator produces
the custom transformers in the patch.

5.5. Compiling The Dynamic Software Update Patch

The dynamic software update patch produced by the patch@enevhich is in source code format, is
compiled using thécucc. pl compiler to produce a dynamic software update patch in piftamat,
which is a dynamically loadable shared object library. Tirgary dynamic software update patch is later
used to apply a live update.

Figure 5-10shows an example of preparing a binary dynamic softwaretegatch that will update
vsFTPd from version 2.0.4 to version 2.0.5. The compilatsocarried out in two steps.

- First, the patch is compiled to also be updateable itsek."Fh updat e- ver si on=205" argument is
used to indicate that the patch will update the originalieerso the new version 2.0.5.

Note that compilation is executed with thePI Cflag which produces position-independent code.
Position-independent code is required when building shabgect libraries.

The output of this first compilation step is an updateablecitfjle named
vsftpd_conb. c_v204_t o_v205. hcupat ch. o.

Tip: To manage the versioning complexity of applying multiple dynamic software updates during
the lifetime of an application, compiling the patch to be updateable appends to many datatypes,

variables and functions the postfix _vXxX, where XXX is the version number. For example, for an
update from vsFTPd 2.0.4 to vsFTPd 2.0.5, the compilation appends the postfix _v205.

The datatypes, variables and functions that have their names changed are all datatypes, variables
and functions that differ between the two versions, all functions defined in the mappings file, and
all automatically generated datatype and stack transformers.

« Second, this updatable object file is re-linked to createredhcally loadable shared object library
file. Creating a loadable shared object library file is nemssfor the runtime to be able to load the
patch into the address space of an already running procegsdi®pen() .

Note that the name of this library is supplied with theonane linker parameter and it is
vsftpd_v205_t o_v205. so. Also note that the linker by default adds the préfisb to all library
names passed to it. Henlceb + vsftpd_v205_to_v205.so = |ibvsftpd_v205_to_v205. so.

The output of this re-linking process is the binary dynanaitvgare update patch
l'i bvsftpd_v205_to_v205. so. 205, and this is the file used to apply a live update, as described i
Chapter 6

29

Chapter 5. Preparing Dynamic Software Updates

Figure 5-10. Compiling a dynamic software update patch for ¢FTPd from 2.0.4 to 2.0.5.

Conpile the source dynam c software update patch to be dynamically updateabl e
bash$ hcucc.pl -fPIC\

-c vsftpd_conb. c_v204_t o_v205. hcupatch.c \

-0 vsftpd_conmb.c_v204_to _v205. hcupatch.o \

- - updat e- ver si on=205

Create a binary dynam c software update patch as a dynamically | oadabl e
shared object library
bash$ hcucc.pl -shared -W, -sonane=vsftpd_v205_to_v205.s0 \

-0 libvsftpd_v205_to_v205. so. 205 \

vsftpd_conb. c_v204_to_v205. hcupatch. o

Warning

Unlike preparing updateable programs in Section 4.1, no " - - base- ver si on"
argument is supplied here. The dynamic software update patch is not the original
program: it is an update. When the patch is applied the original program is already
running.

30

Chapter 6. Applying Dynamic Software Updates

Applying dynamic software updates can be accomplished\mking the toolhcuappl y supplied with
a dynamic software update patch, as preparéchapter 5

An example of applying a dynamic software update to vsFTBrhfversion 2.0.4 to version 2.0.5 is
shown inFigure 6-1 The binary dynamic software update patéhovsft pd_v204_to_205. so, which
was obtained irsection 5.5is supplied as a parameter to tireuappl y tool.

Figure 6-1. Applying a dynamic software update for vsFTPd fom 2.0.4 to 2.0.5

bash$ hcuapply --file=libvsftpd_v204_to_205.so0 \
- - updat e- ver si on=205

By default, the updating model that will be applied during tipdate is stack reconstruction. A lazy
updating model, in which functions are updated on entry,bmrequested with the argument
- - updat e- nodel =l azy.

An alternative method of applying dynamic software patdbessing the API calls
HCU_STATI C_REQUEST_UPDATE = (), as described iSection 4.3

31

Chapter 7. System Internals

7.1. Function Call Indirection

Function calls are transformed to be executed using thekmelivn technique of pointer indirection. For
each functiorf _v1, a global function pointer variable pt r is created that originally points & _v1.
Calls tof _v1 are transformed to calls td _ptr.

7.2. Thread Entry-Points

If the mai n() function or the start routine passed tptenr ead_cr eat e() attempt tor et ur n during
reconstruction they will terminate permanently. To alldwe tipdate ofrai n() or thread entry points,
calls to such functions are initiated from a wrapper functio

7.3. Signal Handlers

The address of signal handlers, defined witlgact i on() andsi gnal (), is stored inside the operating
system. To avoid resetting signal handlers when they arataddve initiate calls to them from a
wrapper function. Additionally, signal handlers interrapwill the execution of a program at an
arbitrary point. They are incompatible with stack recamstion and we instrument them to raise a flag
on entry and reset the flag before exiting. Requests to updatejected when a program is executing a
signal handler. They are immediately satisfied when theraragwitches again to normal execution
mode, and can update the signal handler code at that point.

7.4. Update Points

Update points are automatically inserted in points of etienun the original program that guarantee
immediate updates. They are inserted in the beginning d¢f fexction (inside the function), and the
beginning of each loop (inside the loop). The capability pdate, if needed, at each iteration of a
long-running loop makes it possible to dynamically updatgpams from one algorithm to another
while taking advantage of the progress of the older algorith

Tip: A more aggressive transformation could insert update points in each basic block at the
source-code level. However, there would be little benefit in this approach since function calls and
loops are encountered sufficiently often to render update points in other basic blocks, like

i f-then-el se and swi t ch statements, unnecessary.

32

Chapter 7. System Internals

It is possible to have update points selectively activatedisabled. The application programmer can
specify when requesting an update which update points dladfdct the update (e.g., all except points
250-259 and 262) and this information is stored in the dyeamdating runtime. This empowers the
programmer to use the updating mechanism to enforce additgeneral safety. After an update is
applied, all update points are disengaged. The curreneimg@htation is restricted to a coarse-grain
activation of update points by using a singiest _updat e flag, but we plan to support more fine-grain
selective activation.

7.5. Exported Local Variables

Thedl open() library call successfully loads a dynamic update patchefghtch references only global
variables. References to variables that were declaredlitotize original version (using thet ati c
keyword) are not accessible after dynamic loading, leattirgystem exceptions. The UpStare compiler
removes that at i ¢ keyword from all local variables and exports them to global.

7.6. Multi-Threaded Updates

The difficulty in updating multi-threaded programs lies @fedy coordinating the update timeliness.
When datatypes are updated by one thread, one of the rem#éineegls may attempt to use code that
relies on the old representation of the datatype beforecibenters an update point. We adapted an
algorithm that blocks all threads in heterogeneous chenkipg for multi-threaded applications for
dynamic updates. The idea is to force all but one thread tckbAden the application must update. The
one thread that is not blocked will be the coordinator of thdaie. It polls the status of the remaining
threads until it can tell for sure that all threads are blagkes defined below.

When a thread reaches an update point and the applicatiorupdste, it raises a flag indicating that it is
willing to cooperate on the update and then attempts to acquice@dination lock. The first thread to
acquire the coordination lock is tleeordinator of the update. The coordinator can tell that some threads
are blocked if their cooperation flags are raised. But thsdwt cover all threads. Some threads might
be blocked waiting on an application lock owned by a threadl ihalready willing to cooperate and that

is blocked on theoordination lock To that end, the system needs to keep track of the blockitgsstéd
various threads. Calls tat hr ead_nut ex_| ock() andpt hr ead_nut ex_unl ock() are replaced with
wrapper calls to keep track of the blocking status of thre®digen a thread attempts to acquire a lock, it
adds the lock to &ANT list. When the lock is acquired, the lock is removed from\waaI list and

placed on &HAVE list. When the thread releases the lock, the lock is remowad theHAVE list.

The coordinator determines that a threacklly blocked if:
« The thread is willing to update;
« The thread is blocked waiting on a lock owned by another thtkat isreally blocked.

The coordinator keeps on checking the status of the otheadsruntil it can determine that all other
threads areeally blocked, at which time the coordinator initiates the actual updtte :stack of each

33

Chapter 7. System Internals

thread is fully unrolled; all datatypes are transformed;stacks are reconstructed; and, the threads are
released to resume executing the updated version.

7.7. Multi-Process Updates

Multi-process applications whose multiple processes camoate with each other, such as processes
that use shared memory, signals, or pipes, still need to 8ategd immediately as a group to guarantee a
safe update.

The UpStare compiler automatically transforms callsdok() into calls to the runtime system. The
runtime system traces the process hierarchy and when ateupdat be applied, stack unwinding and
reconstruction is coordinated to be atomic among all céiidand their threads, of the application. It
also wraps calls teai t () andwai t pi d() to free memory used for process hierarchy tracing.

Tip: Supporting multi-process updates can be disabled by supplying the - - no- nul ti - process
argument to the compiler.

7.8. Blocking System Calls

A single threaded or a multi threaded application may haveeat block on a system call, thereby
delaying the update. This is particularly problematic farltinthreaded applications since one thread
blocking on a system call may indefinitely delay the updatthefcode of another thread. That's because
all threads need to be blocked by our system to update andnmeteell how long a thread will block on

a system call. Examples include waiting to read user inpaitimg to receive data from a network

socket, or writing to a file on disk. This indefinite blockinggsibility exists because the thread waits to
acquire a lock, or is put to sleep on a queue inside the opgrayistem kernel. We aim to provide an
updating solution that does not rely on the operating systedias such refrain from instrumenting lock
acquisition and release inside the kernel.

We automatically transform applications to always iss@eds a non-blocking operation that allows the
runtime system to regain control over execution. Blockiggtem calls that are handled include

accept (), read(),recv() andsel ect () . Blocking calls not yet handled inclugsel ect (),
recvfrom(), andrecvisg() .

We automatically segment tiendf i | e() operation to smaller chunks to ensure the system call won't
block indefinitely. Thewi t e(), send(), and operations are not broken to smaller chunks yet.

Tip: Since there are some blocking system calls that the compiler does not handle yet, the compiler
will stop with an error if it encounters such blocking system calls. This behavior can be overriden by
supplying the argument - - i gnor e- unsuppor t ed- bl ocki ng- syst em cal | s. Disabling this

Chapter 7. System Internals

safeguard opens the possibility for a program to block indefinitely if an update is requested and the
program executes a blocking system call that does not return.

7.9. Dynamic Stack Tracing

Runtime safety checks are enforced by consulting informnadbout the application call sequences (one
per thread) and the call site for every call in these sequedes information is called the
context-sensitive call stack information. This infornoatis available at any point during the execution
and is maintained using a dynamic stack tracing mechanisogr&ms are instrumented to efficiently
and dynamically maintain their stack state at a high-leselifce-code) and offer this information to the
dynamic software updating runtime environment to enfoedetg checks before an update is applied.
The captured state is architecture (and operating systetapendent.

The stack trace dynamically captures the names of functiatsare active on the stack. For each
function that is active on the stack, the instrumentatico ahves the execution point from which the
next stack frame was created when the callee function wasdcdlhe combination of function names
and their execution points provides an accurate contexgidee call stack trace. The execution points
captured are equivalent to the continuation points desdribSection 5.3.3Using this call stack trace,
safety checks such as type-safety and transaction-safetyeenforced more accurately. Type-safety
can be enforced if type information is precomputed (stlsicéor every continuation point.
Transaction-safety can be enforced if a user forbids usdeden being applied inside specific regions of
code which are active on the stack.

Warning

The overhead of dynamic stack tracing can be considerable. It is possible to have
the overhead be incurred temporarily: from the time an update is requested until
the time the update is applied. However, this support has not been implemented
yet.

35

