
WHOLE-PROGRAM DYNAMIC SOFTWARE UPDATING

by

Kristis Makris

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

ARIZONA STATE UNIVERSITY

December 2009

c© 2009 Kristis Makris
All Rights Reserved

WHOLE-PROGRAM DYNAMIC SOFTWARE UPDATING

by

Kristis Makris

has been approved

October 2009

Graduate Supervisory Committee:

Rida A. Bazzi, Chair
Kyung Dong Ryu

Donald Miller
Partha Dasgupta

ACCEPTED BY THE GRADUATE COLLEGE

This is a single-spaced version of the dissertation under a different style guide

iv

ABSTRACT

Dynamic Software Updating (DSU) aims to update an old version of an application

to a new version without causing downtime. This dissertation presents a new whole-

program update DSU mechanism that can apply updates which cannot be applied

by other DSU mechanisms. Compared to existing work, it has two main advantages

that improve the updateability of applications. First, whole-program update effects

updates immediately: atomically and with bounded delay. Immediate updates are not

supported by existing DSU systems, but immediate updates are necessary to safely

update multi-threaded and multi-process applications without service interruption.

Second, whole-program update can update functions and data that are active on the

stack. To update functions active on the stack, existing update mechanisms rely on

the user to anticipate the future evolution of an application, or on the application

to quiesce (which may never happen). To update data active on the stack, existing

update mechanisms rely on data-access indirection, which can incur unacceptable

overhead.

This dissertation also presents a compiler-based DSU system, called UpStare, that

implements the whole-program update mechanism and offers useful safety guaran-

tees. UpStare automatically converts applications to be updateable through source-

to-source transformations. It also automatically prepares DSU patches to apply an

effective mapping of the state of the old version of an application to the new state.

This significantly reduces the input needed by the user in preparing an update map-

ping. Experience using UpStare to update real-world, multi-process server appli-

cations shows that UpStare can systematically apply safe updates with little to no

user intervention for typical application use cases. However, updating an application

anywhere during its execution with minimal user input needs additional analysis to

verify updates are semantically safe. UpStare reports comparable or less overhead

than the current state of the art and the overhead can be reduced with additional

optimizations.

v

ACKNOWLEDGMENTS

This dissertation would not have materialized without help from many people.

My parents sacrificed a lot for me to have the opportunity to produce this disser-

tation. Besides having their unconditional love and support, I am fortunate for them

being educators. I am also fortunate that my sister had paved the road and could

offer advice.

I am indebted to my advisor Rida Bazzi for his guidance, continuous support,

and encouragement while doing research. Rida was patient, helped think abstractly,

and contributed many ideas, including the suggestion to experiment with stack recon-

struction. He helped with organizing and presenting this work and taught captivating

compiler construction courses.

I need to thank my former advisor Kyung Ryu who diligently supported me and

provided me with opportunities, motivation, and an appreciation for persevering to

produce results. I am grateful for Donald Miller’s support and fascinating operating

system internals courses without which I would have not attempted to explore DSU. I

also thank Partha Dasgupta for his support and many insights into real-world systems.

This work benefited considerably from the availability of CIL and from discus-

sions with, and feedback from, Michael Hicks and Iulian Neamtiu. I thank them for

providing a KissFFT instrumented with Ginseng and for making Ginseng available.

Discussions with Andrew Baumann and Jonathan Appavoo were also essential in

better understanding the DSU problem.

This dissertation was supported in part by NSF Grant CSR-0849980.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

Chapter 1 INTRODUCTION . 1

Scope of this Dissertation . 3

Overview of this Dissertation . 4

Chapter 2 THE DYNAMIC SOFTWARE UPDATE PROBLEM 6

Dynamic Software Update . 6

Safety . 7

Type-Safety . 7

Transaction-Safety . 7

Representation Consistency 8

Logical Representation Consistency 8

Thread Safety . 9

The Need for Immediacy . 9

Update Mechanism . 10

Whole-Program Update . 12

Interrupt-Update-Restart . 12

Binary Instrumentation . 12

Function-Pointer Indirection 13

Logical-Stage Extraction . 13

Data-Access Indirection . 13

Updateability . 13

Coverage . 14

Complexity . 14

Service Interruption . 15

User Input . 15

The Use of Update Mechanisms for DSU 16

Interrupt-Update-Restart . 18

Binary Instrumentation . 18

Indirection and Extraction . 19

Whole-Program Update . 21

Conclusion . 21

Chapter 3 RELATED WORK . 23

Extensible Design . 23

Binary Instrumentation . 24

vii

Page

Dynamic Update . 25

Replication . 27

Virtualization . 29

Checkpointing . 30

Continuation-Style Programming . 31

Conclusion . 32

Chapter 4 DYNAMIC SOFTWARE UPDATE SYSTEM 34

System Architecture . 34

Compiler . 36

Runtime Environment . 36

Patch Generator . 37

Stack Reconstruction . 37

Default State Mapping . 43

Default Datatype Mapping . 43

Default Stack Mapping . 45

Default Execution Continuation Mapping 46

User Interface . 47

Datatype Transformers . 48

Stack Transformers . 49

Execution Continuation Transformers 50

Multi-Threaded Updates . 52

Blocking System Calls . 54

Conclusion . 55

Chapter 5 RUNTIME SAFETY CHECKING 57

Dynamic Stack Tracing . 57

Stack Tracing in a Global Variable 59

Stack Tracing Using the POSIX Threads API 60

Stack Tracing Through Parameter Passing 61

Stack Tracing and Stack Reconstruction 63

Type-Safety . 63

Transaction-Safety . 64

Conclusion . 64

Chapter 6 EVALUATION . 66

KissFFT . 66

Execution Time . 66

Sources of Overhead . 71

viii

Page

Memory Footprint . 73

Instrumentation Size . 73

The Very Secure FTP Daemon . 75

Source Code Evolution . 76

Experience . 78

Performance . 80

PostgreSQL Database Management System 82

Source Code Evolution . 83

Experience . 85

Performance . 86

Conclusion . 88

Chapter 7 CONCLUSION . 91

Future Work . 91

Program Slicing . 93

REFERENCES . 94

ix

LIST OF TABLES

Table Page

I Comparison of Update Mechanisms. 11

II Impact of Update Mechanisms on Updateability. 17

III vsFTPd: Source Code Evolution. 77

IV vsFTPd: Impact of Instrumentation on Latency. 81

V vsFTPd: Impact of Dynamic Stack Tracing on Latency. 82

VI PostgreSQL: Source Code Evolution. 84

VII PostgreSQL: Impact of Instrumentation on Throughput. 87

VIII PostgreSQL: Impact of Instrumentation on Latency. 88

IX PostgreSQL: Impact of Dynamic Stack Tracing on Throughput. . . . 89

X PostgreSQL: Impact of Dynamic Stack Tracing on Latency. 89

x

LIST OF FIGURES

Figure Page

1 UpStare System Architecture. 35

2 Transformation of Function Calls for Stack Reconstruction. 38

3 Transformation of Function Entrypoints for Stack Reconstruction. . . 40

4 Insertion of an Update Point at the Beginning of a Loop. 42

5 Transformer for Datatype struct vsf session (vsFTPd v1.2.0 to v1.2.1). 44

6 Transformer (Part) for Global Variables (vsFTPd v1.2.2 to v2.0.0). . 48

7 Stack Transformer for do file send ascii() (vsFTPd v1.2.2 to v2.0.0). . 50

8 Continuation Points in vsFTPd v1.2.2 51

9 Continuation Points in vsFTPd v2.0.0. 52

10 Continuation Mapping (Part) to Update vsFTPd v1.2.2 to v2.0.0. . 53

11 Dynamic Stack Tracing Using the POSIX Threads API. 61

12 Dynamic Stack Tracing Through Parameter Passing. 62

13 KissFFT: Impact of Reconstruction Code on Running Time. 69

14 KissFFT: Impact of Reconstruction Code on Memory Footprint. . . . 74

15 KissFFT: Impact of Reconstruction Code on Function Size (.text). . . 75

xi

Chapter 1

INTRODUCTION

The ability to continuously run systems and applications is a critical business and

technology need. Downtime can disrupt the service a business provides and is expen-

sive [1, 2]. It can lead to direct loss of revenue, and during the downtime resources

which have already been paid for remain unutilized. A study on business continuance

in various industries conducted by The Gartner Group [3, 4] reported that the cost

of one hour of downtime ranges from $1.3M in Information Technology, $1.5M in

Financial Institutions, $2.8M for Credit Card Sales Authorizations, up to $7.8M for

Brokerage Operations, and an average of $0.9M per industry. In another study [5]

28% of correspondents reported each hour of downtime would cost their companies

between $51K-$250K, 18% said it would cost between $251K-$1M and 8% said it

would cost over $1M.

Avoiding downtime of applications is an important problem that has not been ad-

equately addressed. Downtime is still experienced in many non-stop environments,

such as medical [6, 7], air-traffic control [8, 9, 10], telecom [11, 12, 13], financial ex-

change [14, 15], power plant [16], and spacecraft flight systems [17, 18]. A recent study

reports [19] that minimizing downtime is one of the top three concerns of large enter-

prises (over 10,000 employees). In 60% of the cases the primary source of downtime

is application changes [20], but application changes are inevitable. Feature additions

and bug fixes (bugs cost the U.S. economy between $22.2B - $59.5B annually [21])

are part of the software maintenance lifecycle.

The dominating approach of minimizing downtime is to maintain hardware and

software replicas and plan outage periods [22] to switch service to the replicas. How-

ever replication has three disadvantages. First, replication still disrupts application

execution. If a hardware replica of an application is available, but the application

does not offer software-level replication, access to the old replica must be disabled

before the new one is enabled else data may be lost. Second, replication cannot help

if an application is upgraded to a new version that is not backward compatible with

the old version (e.g. when communication protocols [16] or database schemas are up-

dated). Even if software-replication is available, the incompatibility between versions

can make it impossible to replicate data. Third, the cost of planned outages, along

with the cost of redundant hardware and system administration, may be prohibitively

high in some environments.

2

Dynamic Software Updating (DSU) aims to maintain running software without

causing downtime. It is the ability to replace an old version of a program with a

newer version during runtime without killing the application process. DSU is desirable

because of its potential to apply an update with little or no impact to the service

provided by the application. For example, updating an application during runtime

can preserve open network connections and in-memory data. A typical dynamic

update consists of: (1) pausing the execution of the old version in a given state, s;

(2) applying a state mapping function S to s to obtain a state S(s) = snew; and (3)

resuming execution of the new version using snew as the initial state. In general, a

state mapping needs not happen instantaneously and can be done lazily in stages. The

state mapping should be safe in that the resulting state snew should be a valid state of

the new application (in a sense that will be described more precisely in Chapter 2.2).

In general, a valid state mapping is not always possible, and, when it is possible, it

is not necessarily possible for all states of the old application.

The DSU problem consists of two components:

• Update safety: Determining the states, or execution points, of the old applica-

tion for which it is possible to apply a valid update. And determining for these

states the state mapping function to effect the update.

• Update mechanism: Effecting the update through a mechanism that maps an

old execution state to a new execution state.

In general, the update safety problem is undecidable [23]. This implies that, in

general, user help is needed to determine safe update points and to specify the state

mapping function. Nevertheless, this does not mean that it is not possible to solve

the problem automatically or semi-automatically without or with little user help for

many practical cases of interest. And since user help is unavoidable, it is important

to provide the user with an update mechanism and safety checks that make it easier

to reason about the update.

Regarding the update mechanism problem, current DSU mechanisms are limited in

their support for update of active functions and data structures [24, 25, 26, 27, 28]

and in their support for immediate updates [29, 30, 31, 32, 33, 34]. To support

the update of functions that are active on the call stack they rely on quiescence

(functions that will be updated should not be active on the stack [24, 35, 28]) and for

the user to anticipate long-lived loops and mark them for code replacement [29, 32]

or to split them in multiple logical stages [33, 36]. To support the update of data

structures active on the stack [32, 33, 37] they rely on data-access indirection to

access the data structures, which can incur unacceptable overhead in computationally-

bound applications. One approach pads datatypes beforehand with enough room to

3

accommodate future growth [32], but after many updates there may be no space left

to accommodate an update, and the padding affects negatively the data cache.

Immediate updates are not supported by existing DSU systems. An update is

immediate if it satisfies:

• Atomicity: before the update only old code executes and after the update only

new code executes;

• Bounded delay: if a valid mapping is known for a given state and the execution

is in that state, then the mapping is applied in a bounded amount of time.

Atomicity is desirable because it is sufficient to guarantee logical consistency [38, 39]:

the execution of the application is indistinguishable from an execution in which the old

version executes for some time, then the new version executes. While bounded delay

is not necessary for logical consistency, for multithreaded applications immediate up-

dates are needed to provide logically consistent updates without service interruption:

the update does not cause the service to be unavailable for an unbounded amount of

time.

1.1 Scope of this Dissertation

This dissertation addresses the limitations of current DSU systems by focusing on

the update mechanism problem. It does not aim to solve the update safety problem,

although it provides useful safety guarantees that can help address it. The dissertation

argues that a strong solution to the update mechanism problem will allow approaching

the update safety problem from a different viewpoint.

Current DSU mechanisms are restricted in their ability to update active functions

and data structures. They are not able to update the entire old state s when producing

snew. They are able to update only part of the state. They handle this restriction

by updating from a limited range of application states for which this restriction does

not impede applying a safe update. They identify old states (often these old states

are quiescent points) for which the update mechanism is able to safely produce the

entire new state snew. The number of these states is limited (and sometimes there are

no such states), and identifying a mapping to the new state snew from these points is

often simple and requires little user input. In summary, existing work has focused on

the identification of (limited) old states that are valid for the DSU mechanism and

has not been concerned with identifying complex state mappings.

An ideal update mechanism would be one that is capable of updating the entire

old state. For example, update all functions on the stack, replace or remove functions

from the stack, add more functions on the stack, modify function signatures, modify

return addresses, provide more room for all stack-resident variables, and modify the

4

Program Counter of all threads. Such an update mechanism would be stronger than

existing mechanisms because given any old state for which it is possible to apply a

valid update, and a mapping to the new state, it would always be able to produce

a new state. There would be no restriction to the identification of an old state to

apply an update due to the update mechanism. Any restriction of identifying a valid

old state would be attributed only to the difficulty of identifying a mapping to the

new state. The challenge would be to produce such a mapping with little user input.

This state mapping can be more complex because it has to consider more aspects

of the state (such as stack-resident data and return addresses) than existing DSU

mechanisms.

Thus a stronger update mechanism would shift the focus in solving the DSU

problem from the identification of (limited) old states that are valid for the DSU

mechanism (and which require simple state mappings) to minimizing user input for

identification of possibly complex mappings. This shift of focus can lead to higher

updateability in applying DSU.

Another aim of this dissertation is to apply immediate updates of multi-threaded

applications. The dissertation supports that this is possible with a strong update

mechanism that can atomically update the entire state. It should also be possible for

such an update mechanism to apply the update with bounded delay. For example, it

should not be necessary to wait indefinitely until long-lived computationally-bound

loops finish, or until blocking system calls, such as I/O calls, finish. Offering bounded

delay does not seem far fetched. This notion is found in the preemptible Linux

2.4 [40, 41] and K42 operating systems [42], and hard-realtime embedded systems in

general.

1.2 Overview of this Dissertation

The rest of this dissertation is organized as follows:

Chapter 2 discusses the DSU problem, presents safety considerations, justifies the

need to apply immediate updates, proposes an update model of whole-program update

and compares software updating mechanisms.

Chapter 3 surveys the literature and presents the various approaches that can be

used to apply software updates, including dynamic software updating.

Chapter 4 presents a DSU system implementation of the whole-program update

model called UpStare and describes how the state of an application is mapped using

stack reconstruction, how the update of multithreaded applications is supported by

forcing all executing threads to block, and how bounded delay is provided by trans-

forming blocking system calls into non-blocking.

Chapter 5 describes the dynamic stack tracing approach and how it can enforce

various runtime safety checks.

5

Chapter 6 presents the evaluation of UpStare in updating real-world applications

and in studying the sources of overhead of the implementation.

Chapter 7 discusses future work and concludes this dissertation.

Chapter 2

THE DYNAMIC SOFTWARE UPDATE PROBLEM

This chapter introduces the dynamic software update problem. It discusses safety

considerations, argues for the need to apply immediate updates, and presents existing

update mechanisms and their impact on updateability.

2.1 Dynamic Software Update

A DSU effects both the program code (functions) and the program state (global

and local variables). Given a program (Π, s), where Π is program code and s is an

execution state, a typical dynamic update of Π to Πnew, where Πnew is a new version of

Π, consists of: (1) pausing the execution of Π; (2) applying a state mapping function

S to s to obtain a state S(s) = snew; and (3) resuming execution of Πnew from state

snew. In general, a state mapping needs not happen instantaneously and can be done

lazily in stages. The state mapping should be safe in that the resulting state snew

should be a valid state of the new application. However, a valid state mapping is not

always possible, and, when it is possible, it is not necessarily possible for all states of

the old application.

Applying a dynamic update results in a hybrid execution of the running application.

In general, this hybrid execution needs not satisfy the semantics of either the old or

the new versions. The desired semantics need to be determined by the user. A state s

for program Π is valid for update from Π to Πnew if there is a state mapping function

S that can be applied to state s such that the resulting hybrid execution satisfies the

desired semantics. The DSU problem has two aspects:

• Update safety: First, determining the states s, or execution points, of the old

application for which it is possible to apply a valid update. Second, determining

for these states the state mapping function S(s) to effect the update and produce

snew.

• Update mechanism: Effecting the update through a mechanism that maps an

old execution state to a new execution state.

Gupta [23] showed that, even for weak requirements on the semantics of the hybrid

execution, it is undecidable to determine if a given state s is valid for update from Π

7

to Πnew. The problem is related to the problem of identifying semantic differences [43]

between two versions of a program. Identifying semantic differences has been stud-

ied extensively and is also undecidable although safe approximations are known [44].

Identifying semantic differences dynamically [45, 46] requires large amounts of mem-

ory as it needs to maintain an execution trace history. Little work [47] has investigated

how semantic differences can be dynamically validated efficiently.

So, in general, assistance from the user is required to both identify valid states and

guide the state mapping. Nonetheless, there are many situations in which a default

state mapping can produce a new state that will satisfy the desired semantics.

2.2 Safety

Given that it is not possible in general to guarantee the safety of updates without

user help, it is helpful to provide some restricted safety guarantees that are satisfied

by the updated program. The goal is to make it easier for the user to establish that

the default mappings result in valid updates and, if they do not, to supplement the

state mapping to make it valid. Some useful guarantees are presented.

2.2.1 Type-Safety

Type-safety guarantees no old version of code Π should be executed on a newer version

of a datatype representation τ ′ (oldcode-type-safety) and no new version of code Π′

should be executed on an older version of a datatype representation τ (newcode-type-

safety).

As an example, consider adding in a C struct that contains five fields a new field as

the third field listed and properly constructing a new state snew for a variable of this

datatype. If code from the old version accessed the newer version of this datatype in

snew it would incorrectly access the memory area used by the new field when intending

to access the fourth field, and corrupt data.

2.2.2 Transaction-Safety

Transaction-safety guarantees that some sections of code that are denoted by the

user as transactions execute completely in the old version or completely in the new

version.

Unlike type safety, transaction safety requires user annotations. One way to ensure

transaction safety is to prohibit updates when execution is in such a user specified

section. This can be done at runtime by querying if the current state is in a forbidden

region, but this is not straightforward to achieve. If a function f is called inside a

transaction and in other parts of the program, then determining the execution state

requires knowledge of the stack contents. Alternatively, transaction safety can be

8

ensured at compile time by conservatively estimating update points that will not

violate the transactional requirements.

More generally, a DSU system may be able to provide the user with a more flexible

notation to specify that an update is not valid in a given state. For example, stating

that an update is not allowed if Thread 1 is executing in (say) <functionA,lines 135-

160> while Thread 2 is executing anywhere within <functionB> can be sufficient

input to a DSU system to apply the update when these threads do not violate this

safety constraint.

2.2.3 Representation Consistency

Representation consistency involves consistency of both the state s and the program

Π:

• State representation consistency: guarantees that at no time does the executing

application expect different representations of state, such as global variables or

stack-frame contents (local variables, formal parameters, return addresses).

• Program representation consistency: guarantees that following the update only

Πnew is executed over the new state snew; no part of Π is executed again.

Representation consistency (state and program) makes it easier to reason about

the effects of executing code on the state because Πnew and snew in memory match

the source code.

The difference between state representation consistency and type-safety is that

one could provide type-safety by allowing new and old definitions of a type to be

valid simultaneously. For example, one could apply forward and backward datatype

transformers [30], but this makes it harder to reason about updated programs. Ad-

ditionally, it may not be possible to convert a datatype for new code, then backward

for old code, and then forward for new code again, since updated types often contain

more information than older types and data could be lost.

The concept of version consistency introduced in related work[39, 34] is equivalent

to our definition of program representation consistency.

2.2.4 Logical Representation Consistency

Logical representation consistency guarantees that a hybrid execution of both old code

Π and new code Πnew is indistinguishable to an outside observer from executions that

are obtained with representationally consistent updates [38, 39].

9

2.2.5 Thread Safety

Thread-safety guarantees that type-safety, transaction-safety, and logical representa-

tion consistency are provided in multithreaded applications.

In general if a DSU system ensures that a particular safety guarantee (e.g. type-

safety) is satisfied for individual threads independently, then that safety guarantee is

not necessarily satisfied when all threads execute together. This is further discussed

in Chapter 2.3.

2.3 The Need for Immediacy

This dissertation argues that immediate updates are needed to guarantee that the up-

date of common multithreaded applications is logically consistent and can be achieved

without unbounded service interruption. Before justifying the need for immediate up-

dates, it is necessary to first introduce the concept of update with bounded delay.

Bounded delay update: If a valid mapping is known for a valid old state s and

the application is in state s, a state mapping can be applied without pausing the

application for an unbounded amount of time.

An update is immediate if it satisfies logical representation consistency and bounded

delay. To understand the need for immediate updates, consider a multithreaded appli-

cation in which each server thread handles a client connection and threads read/write

in a shared data structure after receiving client requests. In general, there might be

a long delay between successive client requests.

Now, consider an update that changes the specification of the data structure and

how it is accessed and assume a number of connections are active. To effect the

update, there are a number of options:

• Do not allow any new connections and wait until all active connections termi-

nate. When all connection terminate, apply the update. This is not a good

option because it can result in the service being unavailable for an unbounded

amount of time.

• Allow new connections, but using the old version of the code. Wait until all

connections that use the old version terminate. This can result in the update

being indefinitely delayed because the new version may never get to be executed.

• Allow new connections using the new version of the code while connections cre-

ated with the old version are active (possibly blocked for client input). This

is the more interesting case. Once the shared data structure is accessed by

threads running the new version, the data representation would have to reflect

the semantics of the new version. This means that on the next access by the

10

old version either logical representation consistency is violated or the thread

running the old version is forced to be transformed to the new version. Since

violating logical consistency is not an option, the only option left is to immedi-

ately update the thread running the old version. Otherwise the connection will

not be available for its client for an unbounded amount of time.

So, for all cases, the capability to immediately update individual threads is neces-

sary. If multiple threads of the old version are attempting to access the shared data

structures, the updated mechanism should support their collective immediate update.

2.4 Update Mechanism

This section introduces a general model for the mechanism of applying an update

which is termed the whole-program update mechanism. As already discussed, the

update mechanism itself does not consider the validity of the update. For simplicity

the model does not consider program state stored in files, which has also not been

considered by existing work so far.

The model of the update mechanism is more detailed than existing work in two

major respects. First, it considers stack frames of all threads as updateable program

state. Stack frames include local variables, formal parameters, and return addresses.

Second, it considers the Program Counter (PC) of all threads as updateable program

state. Considering the program state s in more detail allows us to better understand

and compare existing mechanisms as restricted forms of the whole-program update

mechanism.

This section compares the update mechanisms of interrupt-update-restart, binary

instrumentation, function-pointer indirection, logical-stage extraction, and data-access

indirection. It outlines the restrictions of each mechanism and concludes that the

whole-program update mechanism is the least restricted update mechanism. Table I

summarizes the comparison of the update mechanisms that are presented next.

11

Produce Πnew Preserve os Update h Update TPC Update Tsf (l ,p,ra)

Interrupt-Update-Restart Yes No Yes Only reset Only set Tsf = {}
TPC = {mainPC }

Binary Instrumentation Yes Yes Cannot enlarge Yes For any Tsf update current ra

variables Cannot enlarge variables in l

or p or add new elements

Function-Pointer Indirection Not all of Πnew Yes No No No
Logical-Stage Extraction Not all of Πnew Yes No No No
Data-Access Indirection No Yes Yes No Only l and p of any Tsf

Whole-Program Update Yes Yes Yes Yes Yes

TABLE I
Comparison of Update Mechanisms.

12

2.4.1 Whole-Program Update

Given a program (Π, s), where Π is program code and s is an execution state, a

dynamic update mechanism produces Πnew and applies a state mapping function S

to s to produce a new state snew.

Program code Π is a set containing the executable code of all functions of the old

program.

Program code Πnew is a set containing the executable code of all functions of the

new program.

A program state s = (os, h, Tsf , TPC) of program Π is a tuple consisting of a set os

containing all state maintained by the operating system related to the program (e.g.

open network connections and file descriptors), h containing all global variables on

the heap, an array Tsf of ordered lists sf of stack frames, one for each thread of the

program, and an array TPC of Program Counters for each Thread. Each stack frame

f(l, p, ra) in sf contains a set l of local variables on the stack, a set p of the formal

parameters, and the return address ra .

The model restricts its attention to updates that aim to preserve the os state.

While in general it is possible to update the os state, it is expected that for some

applications the os state only needs to be preserved.

Program state snew is a program state of Πnew produced by applying the state

mapping function S to the program state s of Π.

The whole-program update mechanism can produce Πnew and all aspects of snew.

2.4.2 Interrupt-Update-Restart

The interrupt-update-restart mechanism kills an application process, updates the pro-

gram code and restarts the application.

This mechanism can produce Πnew and it can update h. However it is unable to

preserve os. Its update to TPC is limited to setting TPC to have only one element:

the PC of the starting thread, which is reset to the starting state of the PC. The

update to Tsf is limited to setting Tsf = {}.

2.4.3 Binary Instrumentation

The binary-instrumentation mechanism modifies a program and its state by operating

directly on its memory image.

This mechanism produces Πnew by modifying Π in-place. It can preserve os, and

update the values of existing variables in h but it cannot extend the size of variables

in h. It can modify TPC . It can update the ra of the current sf for each thread. It

can also update the values of existing variables in l and p but it cannot extend their

size add cannot add new elements in these sets.

13

2.4.4 Function-Pointer Indirection

The function-pointer indirection mechanism changes the address of the function that

will be invoked next.

This mechanism can produce only parts of Πnew. For some old code Π executing

that needs to be updated (e.g. main()), this mechanism cannot produce this code in

Πnew. It can preserve os, but it cannot update h. It also cannot modify any aspect

of TPC or Tsf .

2.4.5 Logical-Stage Extraction

The logical-stage extraction mechanism allows separating function bodies into logical

stages and updating them individually, either through function-pointer indirection or

code inlining.

This mechanism can produce only parts of Πnew. It cannot produce Πnew for code

in Π that crosses logical-stage boundaries. It can preserve os, but it cannot update

h. It also cannot modify any aspect of TPC or Tsf .

2.4.6 Data-Access Indirection

The data-access indirection mechanism allows accessing data either through derefer-

encing a pointer or using the help of a page or trap handler.

This mechanism cannot produce Πnew; it can only update the state s. It can

preserve os, update h, and update only l and p of any Tsf . It cannot update the ra

of any Tsf and cannot update TPC .

2.5 Updateability

DSU systems range in their ability to update from as many old states as possible

(coverage), to what extent they can update program code and state (complexity), in

their ability to preserve the service provided by an application to other applications

(no service interruption), and the input required by the user. These capabilities are

loosely referred to as the updateability provided by a DSU system. Carefully balancing

these capabilities is the major challenge in designing a DSU system. On one hand,

limiting coverage can decrease the complexity of updates that can be applied and the

input required by the user. On the other hand, increasing coverage also increases the

complexity of updates that can be applied but requires more input from the user.

Each of these capabilities is described next.

14

2.5.1 Coverage

The ability to use an update mechanism that can update from many old states is

valuable for two reasons. First, it allows inspecting many old states to determine if

they are safe for update: states that are valid for update and for which a state mapping

function can be identified. Second, it allows an application to be updated very quickly

from the time an update is requested. In contrast, if the update mechanism can

update from very few old states, the number of states that can be determined to be

valid for update becomes limited. Given an update mechanism that is considerably

limited in the old states it can support, some updates may not be applied at all.

The concept of timeliness has been introduced in related work to describe the

appropriate time at which applying an update will be safe. It is important to clarify

that existing discussions on timeliness in the literature are in fact discussions on

coverage. An update may occur over a transitional period of time in which the state

mapping function S(s) is applied. It is possible to incrementally produce parts of

snew while parts of Π and parts of Πnew are both executing at the same time, as long

as logical representation consistency is not violated. To ensure logical representation

consistency under this hybrid execution mode, some parts of snew need to be produced

at a time that would not endanger safety, such as type-safety and thread-safety. This

“safe time” is a set of old states: states where no ra of any Tsf and no TPC are set

so that pending execution of code for a stack frame would violate safety or logical

representation consistency.

2.5.2 Complexity

Update mechanisms can be compared according to the complexity of the updates they

can support. For example an update mechanism that is unable to update program

code applies updates of lower complexity compared to a mechanism that can update

program code (with everything else being equal). In another example, an update

mechanism that can update only global variables on the heap but not local variables

on the stack applies updates of lower complexity compared to an update mechanism

that can update both global and local variables. Generally, update mechanisms that

can apply updates of high complexity require more user input in producing a valid

state mapping.

Mechanism m is more complex than mechanism m′ if every state mapping that can

be done with m′ can also be done with m. Comparing update mechanisms according

to the complexity of updates they support defines an order relation on the update

mechanisms, but this order relation is not a total order.

15

2.5.3 Service Interruption

Some updates can affect how the application interacts with its environment, but such

updates would require an update of the environment as reflected in the changed inter-

action. This dissertation concentrates on updates that do not affect this interaction.

For such updates it is important to preserve the interactions as they existed prior to

the update. Update mechanisms are classified according to their ability to preserve

os because this state captures the state of interactions with the outside world. Losing

os can interrupt the service provided to other applications.

Service can also be interrupted if the update takes a long time. So, update duration

is also of interest when considering service interruption. An update can take a long

time if it requires updating a large program state (in the order of gigabytes), or data

from disk (which this dissertation does not consider). If the state of the application

is large and an immediate update requires a long amount of time, one might consider

two other alternatives. In one alternative, the update can be postponed until the

state of the application that requires update becomes small enough to be updated

quickly. This might happen if some data structures are freed on the stack or the

heap for example. In another alternative, the update can be applied incrementally so

that only portions of the state (and code) are updated at time. This is not always

possible, to do safely, but, if it is possible, it might be an attractive option. If neither

of the two alternatives are possible, then service would be interrupted due to the

state mapping. Such an interruption is independent of the ability of the update

mechanism to preserve the internal os state. Even if the state of interactions with

the outside world is preserved (e.g. existing network connections remain open), a

long update duration may require the application to be unresponsive for a period of

time. This may violate timing constraints of the interactions of the application with

its environment and be equivalent to service interruption. This dissertation does not

address such timing constraints of the interactions of an application.

2.5.4 User Input

In general, the state mapping function S cannot be automatically validated [23].

Availability of user input in validating the state mapping and supplementing it if

necessary improves coverage. An increase in update complexity can increase the

amount of user input needed for validation. For example, applying an update when

multiple threads are running, and with multiple stack frames active for each thread,

increases the amount of user input needed to ensure the update is valid compared to

a single-threaded application with few active stack frames.

16

2.6 The Use of Update Mechanisms for DSU

DSU systems need to address both the update mechanism and the update safety

problems to be successful.

Existing systems have employed combinations of the update mechanisms presented

in this chapter. As already shown, the choice of update mechanism affects the up-

dateability provided by a DSU system. This section evaluates the most commonly

and successfully used combinations of update mechanisms in their ability to provide

updates. Table II summarizes this evaluation.

17

Coverage Complexity Service Interruption User Input

Whole-Program Update High High No High
Interrupt-Update-Restart Application-dependent Low Yes Low
Binary Instrumentation Medium Medium No Medium
Indirection and Extraction Medium Medium No Medium

TABLE II
Impact of Update Mechanisms on Updateability.

18

2.6.1 Interrupt-Update-Restart

Using the interrupt-update-restart mechanism, applications [48] or operating sys-

tems [49, 50] are stopped (killed, losing volatile state), have their persistent (on-disk)

state updated, and restarted.

A serious limitation of this update mechanism is that it interrupts the service pro-

vided. Moreover, the update coverage depends on the state information maintained

by the application. If the application does not maintain state information or if the

information maintained can be discarded with no effects on application consistency

(for example, if the state is saved to permanent storage and its representation does

not change), then a restart can be harmless. If the state of the application cannot

be discarded and the application is signalled to stop, then it might stop leaving its

state logically inconsistent. So, in general, the update would have to be acted upon

when the application is in a state (if such a state exists) that can be discarded. For

applications that maintain network connections, this might require an indefinite wait

for clients to close connections so that the application reaches a state in which an

update can be applied.

If the persistent state of an application needs to be mapped between versions, this

state is often easy to map for two reasons. First, the state does not include in-memory

data of multiple threads when the mapping is applied. Second, users often develop

mappings from the old persistent state to the new persistent state. One example

are the pg dump/pg restore data migration utilities of the PostgreSQL DBMS. But

very often the persistent state of the new version is backward compatible with the

old version and no mapping is needed at all. Because the persistent state is often

backward compatible and no volatile state is preserved this mechanism often needs

no semantic safety checking.

2.6.2 Binary Instrumentation

Using the binary instrumentation mechanism, applications [51] or operating sys-

tems [52, 53] are instrumented to apply updates of basic blocks the next time the

basic block is called.

Binary instrumentation is a powerful update mechanism. It is one of the few

update mechanisms that are able to modify the return address ra of the current stack

frame of each thread and the set of program counters TPC . However in practice

it has not been used to update these parts of the state and it is typically used to

apply updates of low complexity. The reason is that it requires safety analyses to

update most parts of the state and such analyses can be inconclusive for complex

updates. For example, modifying stack frames to add, enlarge, or move around, local

variables or formal parameters requires a corresponding modification in Πnew to refer

19

to the local variables and formal parameters with the appropriate offsets. Although

often effective, the binary code analyses used to apply such modifications can be

inconclusive because of the possibility that Π incorporates self-modifying code, data-

in-code and code-in-data [54, 55, 56, 33]. Similar analysis is needed if the return

address ra of the current stack frame of each thread or the set of program counters

TPC are modified.

This update mechanism has been generally used to interpose additional code in

basic blocks, and hence apply small and isolated updates. It extends the semantics

of an updated system by adding performance profiling, debugging, and optimization

capabilities. The safety that must provided by a DSU system using this mechanism

is often limited to preserving the existing program semantics, which can be achieved

at a fine-grain through control-flow graph and live register analysis [52, 53]. It is

also possible to apply updates of higher complexity, which will require user input to

validate, by updating complete functions [57, 58, 33]. The advantage of using binary

instrumentation to apply updates of low complexity is that it offers high coverage.

2.6.3 Indirection and Extraction

Using the function-pointer indirection mechanism applications [24, 57, 58, 27, 59,

32, 28] or operating systems [35, 33, 37] are instrumented to apply updates of func-

tions the next time the function is called. This mechanism has been combined with

logical-stage extraction (in applications [29, 32, 36] and OSs [60, 33]) and data-access

indirection (in applications [32, 28] and OSs [61, 33, 37]) to be more effective. Com-

bined, these are currently the dominant update mechanisms used by DSU systems.

These update mechanisms are evaluated in their ability to update single-threaded

and multi-threaded applications.

Single-threaded applications. In single-threaded applications, these mecha-

nisms often offer high updateability. They have important restrictions on coverage

because they cannot update all parts of the state, such as the TPC or the ra of the

current stack frame. But often an application reaches a quiescent point where the

application state is known to be logically consistent and most functions that will be

updated are inactive. After this point the new version of functions that will be up-

dated can be entered again using function indirection. Few active functions cannot

be updated (such as the main() function), and in practice this often does not prohibit

applying complex updates. If infinite, or long-lived, loops need to be updated, the

loop body can be treated as a function that can be updated on entry with some user

help [29, 32].

It is possible to further improve the updateability provided by these mechanisms.

Instead of applying an update only at the quiescent point, it is possible to update some

functions and data eagerly. Under such an eager update, new versions of functions

20

are still entered using function indirection and they are activated before the quiescent

point is reached. This increases the occurrence of code paths executing old code,

new code and then old code again. If an eager update is applied, it must be first

guaranteed that such an update does not violate type-safety, transaction-safety, or

logical representation consistency [38, 39].

Guaranteeing a safe eager update is not straight-forward. It requires either static

(at compile-time) or dynamic (at run-time) safety checking. For example, guarantee-

ing type-safe eager updates statically involves computing universally type-safe update

points, which is bound to be a conservative approximation that limits the number

of old valid states the update can be applied from. Guaranteeing type-safe eager

updates dynamically involves evaluating type-safety based on the execution context,

which requires instrumentation for dynamically tracing the call stack of the program

and incurs overhead, although this approach is more accurate.

Data can be updated in various ways. First, data can be padded [32] beforehand

with enough room to accommodate datatype growth. But the padding can affect

negatively the data cache and after many updates there may be no space left to

accommodate a datatype update. Second, the appropriate version of a datatype can

be retrieved during runtime using data-access indirection [32]. This indirection occurs

for every data access and leads to considerable overhead in data-intensive applications.

Third, semantically non-conflicting new field additions can be maintained separately

in shadow data structures [33, 37] and accessed through pointer indirection. This is

more efficient than general data-access indirection because indirection is applied only

for new field additions. Fourth, instances of old and new data can coexist [59] and

can be maintained through forward and backward data transformers [30, 28], but this

may not be possible if the datatype semantics are no longer compatible.

Multi-threaded applications. In multi-threaded applications, these update

mechanisms offer low updateability because it is not possible to apply an update

for a large number of old states without violating logical representation consistency.

As discussed in Chapter 2.3, this difficulty is due to the possibility of unbounded

delay in the execution of some threads and the inability of these update mechanisms

to effect the update in its entirety (atomically). Splitting the body of long-lived loops

into multiple logical stages [33, 36] and coordinating the update in multiple phases [33]

have been suggested as approaches to increase the number of old valid states, hence

improve overall updateability. These approaches are effective only if the update does

not violate logical representation consistency. They are also unable to update in

the presence of unbounded delay, thus they can interrupt the service provided by an

application indefinitely.

21

2.6.4 Whole-Program Update

Under the whole-program update mechanism, an application or operating system is

paused, updated in its entirety, and resumed.

This mechanism can provide high updateability because updates can be considered

for validity from all old states. The update mechanism does not limit the number

of old states from which an update can be safely effected. This wide coverage of old

states is also the main challenge of the update mechanism. Safely mapping from the

old state to the new for such a large number of old states with little user input needs

semantic safety analysis.

This update mechanism also provides two important capabilities that were not

provided so far by existing update mechanisms. First, it can update functions that

are active on the stack. This is not possible without service interruption using the

interrupt-update-restart mechanism, and it is not always possible using binary in-

strumentation. Second, it can update global variables and local variables active on

the stack with no data-access indirection. This is an important benefit because data-

access indirection leads to considerable overhead in data-intensive applications.

This update mechanism has been applied by Shanhbhag [62] for portable cross-

version checkpointing and recovery for DSU, but some state mappings were not

supported. An early form of stack reconstruction [63] based on continuation-style

programming was also applied to implement whole-program updating for large-scale

process-oriented parallel simulations. But it uses data-access indirection and contin-

uously saves execution continuations during program execution.

2.7 Conclusion

The update safety problem is undecidable, which means it is not possible in general

to automatically determine if a given old state s is valid for update or to determine a

state mapping function S(s) to effect the update and produce snew. In general, user

assistance is required both to identify valid states and guide the state mapping. An

effective DSU system needs to minimize user involvement. This can be achieved by

providing a default state mapping and providing some restricted safety guarantees

that are satisfied by an updated program. Some useful safety guarantees are type-

safety, transaction-safety, actual and logical representation consistency, and thread-

safety.

The updateability provided by a DSU system depends on its ability to update from

as many old states as possible (coverage), the extend to which it can update program

code and state (complexity), its ability to preserve the service provided by an ap-

plication to other applications (no service interruption), the safety guarantees it can

provide, and the input required by the user.

22

Some update mechanisms are unable to update from many old states but provide

useful safety guarantees with little user help. For example, the interrupt-update-

restart mechanism cannot preserve volatile state and depending on the application it

may not be able to initiate an update immediately. However, it can apply complex

updates with the guarantee that updates will be semantically safe with no input from

the user if the persistent state is backward compatible. Combined, the mechanisms

of indirection and extraction are also unable to update from many old states, but

they can apply updates for many single-threaded applications with some user help in

identifying quiescent points and long-lived loops. In multi-threaded applications, the

capability to update immediately is necessary. Binary instrumentation is a powerful

update mechanism but updates applied with it in practice have been limited to mostly

small extensions. The whole-program update mechanism has not been substantially

explored before this work. Although it provides a wide coverage of old states from

which it can update, the main challenge of this mechanism is to minimize the input

required from the user in verifying updates are semantically safe.

Chapter 3

RELATED WORK

This chapter surveys various approaches that have been used to apply dynamic soft-

ware updates. For each approach it indicates which update mechanism, or combi-

nation of mechanisms, the approach uses. The approaches studied are extensible

design, binary instrumentation, dynamic updating, replication, virtualization, and

checkpointing. Continuation-style programming is also studied, which shows promise

for applying DSU.

3.1 Extensible Design

A variety of operating systems have been designed with extensibility in mind to

facilitate software updates of their core. All of these operating systems essentially

use the logical stage extraction and function pointer indirection update mechanisms

to apply their new components.

The Synthesis [64] kernel dynamically specializes operating system services to im-

prove performance. This specialization is limited to producing new versions of the

services that are backward compatible with the old versions.

Similarly, the Synthetix [65] kernel applies optimistic and incremental specializa-

tion to tune system services and applications. It supports concurrent execution and

replacement of functions using concurrent dynamic linking (function-pointer indirec-

tion) and allows adaptively reconfiguring kernel services at fine granularity. To ensure

safety of updates, Synthetix blocks entrance to functions that are executing on the

stack. It also assumes only one kernel thread runs per process, which implies there is

no possibility of multiple kernel calls concurrently accessing process level data struc-

tures. Complex updates of complete subsystems and datatypes are not addressed.

VINO [66, 67] is an operating system specially crafted to be adaptive and extensible.

It collects performance data and applies heuristics to adapt the system according to

its workload. Safety of user extensions to VINO [60] is provided through transactions,

resource accounting, and static checking.

The Exokernel [68] is an operating system that can be extended by untrusted

applications using a library, but extensions are not dynamically applied. SPIN [69]

is another extensible operating system but it does not allow dynamically updating

kernel services either.

24

K42 [70, 35] is an object-oriented operating system that supports DSU. Objects

are accessed indirectly through a common object translation table (function-pointer

indirection). Safe update in K42 is supported using a thread-generation counter that

detects quiescence of objects before they are replaced. The system is guaranteed to

reach a quiescent state because the operating system is specially designed so that all

kernel threads are short-lived and non-blocking.

3.2 Binary Instrumentation

The binary instrumentation mechanism has been used for a variety of applications

including profiling, debugging, optimization, as well as dynamic updates. Only a few

of the systems that use binary instrumentation are focused on dynamic updates, and

these systems combine binary instrumentation with data-access indirection. This

section describes work that uses binary instrumentation including work that does

not address the dynamic software update problem. This allows getting a better

understanding of the limitations of this mechanism in general and its potential to be

used in future DSU systems.

Static binary rewritters like Mtool [71], ATOM [72], EEL [73] and QPT [74] ma-

nipulate the executable instructions of functions to add performance monitoring ca-

pabilities. Since static rewriting is applied before an application is started it cannot

be used for dynamic software updates.

Dynamic binary instrumentation systems extend this capability to unobtrusively

modify applications during runtime. To safely do so, they need to guarantee that the

active state is not corrupted. This state is more complex than the state considered

by static binary instrumentation systems (only program code) because it includes the

values of processor registers, global variables and the stack state of multiple threads.

For example, DynInst [51] adds performance profiling and debugging capabilities in

user-level and parallel applications. KernInst [52] applies dynamic instrumentation,

and control-flow and live register analysis, in a live operating system kernel on the

fixed instruction-length SPARC architecture. GILK [53] applies similar instrumen-

tation and analysis on the variable instruction-length i386 architecture. DTrace [75]

and the Dynamic Kernel Modifier [76] leverage a kernel that has been recompiled to

contain trace points to simplify instrumentation. These systems focused on unob-

trusively interposing performance monitoring and debugging code, and the updated

code generally preserves application semantics. Dynamic binary instrumentation ap-

proaches have also been used extensively for program optimization by Dynamo [77],

Diota [54] and Pin [78]. The instrumentation has been limited to either interposing

code at the basic block level or producing optimized code that is backward compatible

with the old version of the code.

25

In general, dynamic binary instrumentation have not addressed safe updates of

active functions and data structures or of complete subsystems. Supporting such

updates is possible but complex. It requires consulting the compiler ABI, such as the

calling convention for function calls and the order of variable alignment on the stack,

to be able to update local variables and formal parameters. It also requires modifying

the code of active functions to use the appropriate offsets when accessing updated

local variables. If the datatypes of variables or the return value are modified, the stack

may need to be enlarged or reduced. Additionally, updating just one function on the

stack may require updating the code of callees of that function to adjust its offsets, for

example if variables are passed to the callees by reference. This instrumentation can

be inconclusive if it is applied on self-modifying code, functions that contain code-

in-data or data-in-code, or if functions have been compiled without frame pointers.

Finally, mapping optimized binary code to source code to reason about execution

continuation can be challenging.

DynAMOS [33] applies safe multi-threaded DSU in commodity operating system

kernels through a binary instrumentation approach of adaptive function cloning. It

does not update active functions but it allows multiple versions of functions to run

simultaneously and invokes user-supplied adaptation handlers to control the updates.

However, DynAMOS may need to wait indefinitely for a safe update point where a

newer version of a function can be activated. It supports updates of data structures

active on the stack through shadow data structures but this approach requires data

access indirection and cannot be used when updates do not preserve the semantics of

the data.

KSplice [37] examines kernel image files at the binary level to automatically generate

DSU patches (mainly security fixes) and it applies the patches dynamically. It uses

shadow data structures to update data, does not update active functions, and does

not apply safe multi-threaded updates.

3.3 Dynamic Update

Quite a few DSU systems have been designed to update applications. They rely

primarily on function-pointer indirection to update code, and require the application

to reach a quiescent point before they can safely update active code or data. The

DSU systems that have been more successful also use data-access indirection to apply

updates.

Gupta [23] formalized a software updating model and proved that determining

if a change is valid is generally undecidable. This model requires that functions

are not present on the stack when they are updated. To ensure valid updates, he

proposes two approaches: (a) restricting the types of changes permitted, such as

only to functional enhancements (which limits the complexity of updates that can be

26

applied), and (b) reaching the expected updated state some time after the update

(which can disrupt the service provided by an application either indefinitely or until

that state is reached). Most DSU systems follow these two approaches and share the

limitations that accompany these solutions. A practical implementation of Guptas’

system [79] followed the interrupt-update-restart mechanism. It applied software

updates by creating a new process and transferring the state of the old program to

the new. This approach interrupts the service provided by the running application.

For example, open network connections are lost.

DYMOS [24] is the first DSU system ever created. It can add, remove, and update

interfaces of modules at runtime. It groups variables in program modules and updates

entire modules when the modules are quiescent by modifying the process symbol table

(which uses function-pointer indirection). It offers the programmer the capability to

describe the valid states in which an update should be applied. For example, module

P should be updated only when Q and R are idle. However, in the presence of multiple

threads or blocking code updates may need to wait indefinitely before they can be

applied.

Online Patches and Updates for Security (OPUS [26]) is a DSU system targeting

security patches. It modifies the gcc compiler to produce updates of C programs at

a function level and injects the updates (using the ptrace API) after ensuring none

of the functions are active on any thread’s stack. The update mechanism used is

function-pointer indirection (activated with binary instrumentation). Static analysis

is used to detect possibly unsafe changes and alert the programmer, but the analysis

is highly conservative. It does not permit updates to long-running and top-level

functions, function signatures and inline functions. It also does not allow updates to

global data structures, updates to another function’s stack frame, files or sockets, and

does not allow updates to alter the outcome of a function’s return value. As a result

the updates applied are of low complexity.

The Procedure Oriented Dynamic Update System (PODUS [27]) applies updates to

programs by dynamically modifying function call-sites (using binary instrumentation)

to redirect execution to newer versions and can only update single-threaded programs.

Detours [57] and Vulcan [58] also apply indirection for function-level updates. The

shortcoming of all these systems is that they rely on quiescence to safely effect updates

and do not support updates of active data.

The Powerful Live Updating System (POLUS [28]) applies DSU using function

indirection (activated with binary instrumentation). It allows both old and newer

versions of code and data to coexist. During an update, data accesses to either

version of global data are trapped using the single-step debug flag of the processor

and synchronized for data consistency using a state mapping function automatically

provided by a patch generator. This is accomplished by write-protecting both the old

27

and the new versions of data and associating a signal handler to catch write attempts

to either version. POLUS cannot update active function code and stack-resident data

and does not account for safety in the presence of multi-threading.

DLpop [59, 80] is a DSU system that permits multiple versions of a datatype to

coexist in a program. To update a datatype it creates a copy of the data of the

old datatype, opening the possibility of old code operating on stale data. It does

not automatically update function pointers, active data or long-running loops. The

update mechanism used is dynamic-linking (essentially function-pointer indirection).

Ginseng [32] has been successful in applying DSU with a combination of function-

pointer indirection, data-access indirection, and logical-stage extraction. It also au-

tomatically produces state mappings with a patch generator. Although it does not

support updates of functions active on the stack, it offers update support for infinite

or long-lived loops (similar to ERLANG [29]). Users need to anticipate such loops

(and the loop post-ample) and manually annotate them for loop extraction of their

body into a separate function that can be updated before the next loop iteration

begins. To safely update multi-threaded applications [34, 36] users may also need

to manually break some loops in multiple logical stages (like DynAMOS [33]). To

support data updates Ginseng uses padding and data-access indirection and ensures

their safety through static analysis that computes universally type-safe [38] update

points. It also uses static analysis to offer transaction-safety [39]. Compared to other

DSU systems [24, 23, 59, 26, 27, 28, 33, 37] these analyses improve safety and up-

dateability. However, they are conservative approximations that still limit coverage

and cannot guarantee immediate continuation.

Linux hot-swapping [81] uses function-pointer indirection to safely swap kernel mod-

ules when the modules are quiescent. But it is not capable of dynamically updating

core kernel services, like the scheduler and memory manager, or datatypes.

3.4 Replication

Replication of hardware and software resources is the main approach for dealing with

hardware failures. It is also used to support runtime updates. To that end, replication

uses the interrupt-update-restart mechanism to gradually move the service provided

by an application to the replicas providing the new version of the application. As

discussed in Chapter 2.3, the ability to update immediately all execution threads is

necessary to avoid service interruption. Replication can manage to avoid service in-

terruption because it is often implemented only for program code when the persistent

state of the application does not change.

Replication is usually implemented in one of two ways: one confines replication to

program code; the other allows the replication of both the program code and program

state. These two approaches are discussed next.

28

When only the program code is replicated, all replicas access a shared state that is

persistent on disk (e.g. a file server, or a single database instance). This functions on

the assumption that the application does not maintain in-memory state information

(e.g. the NFS protocol, which is state-less) or the in-memory state can be discarded

with no effects on application consistency (e.g. shutdown a web-server that com-

municates with a database). Replication is implemented by redirecting new service

requests to the new replicas using a layer of indirection when requests are received

or by changing a DNS entry to point to a different IP address. This indirection

essentially ensures that the update is applied at a quiescent point. The old replica

continues to service existing requests, shares the persistent state, and may need to

wait indefinitely before the replica can be deactivated. If the update changes the se-

mantics of the persistent state (e.g. the persistent state expected by the new replicas

is not backward compatible) then replication cannot help because it violates logical

representation consistency.

When both the program code and program state are replicated, the replicas need

to communicate to maintain consistency of the program state (e.g. a distributed

database system). New replicas are enabled by starting from a clean persistent state

and requesting from existing replicas a copy of their persistent state. If the semantics

of the application have not changed, the new replica builds its own copy of the

persistent state as communicated from the existing replicas and then participates in

providing service. However, if the semantics of the state are updated (e.g. a database

schema evolves and is not backward compatible), the state communicated to the

new replica is no longer understood by the replica and the update violates logical

representation consistency.

Postgres-R [82] implements eager multi-master replication on top of the PostgreSQL

database management system. It also supports crash recovery and partial replication

by extracting a database schema and its data, installing it to a new replica, and

executing pending consistency messages before new clients are allowed to connect to

the new replica. However this replication model only addresses recovery. It cannot

apply updates that change the semantics of the database schema.

UpStart [48, 83] is a DSU system for distributed systems modelled as objects com-

municating with Remote Procedure Calls (RPC). Updates are applied only at the

granularity of top-level objects (only entire nodes are updated). Older and newer

versions of objects are allowed to coexist and run in mixed-mode using a thin layer of

simulation objects. Simulation objects invoke the appropriate version of an object to

match the version of an incoming RPC call if cross-version interoperation is possible.

If updates are incompatible they cannot be applied immediately; they need appropri-

ate update scheduling from the user. Additionally, updates under this model do not

preserve volatile state.

29

3.5 Virtualization

Virtualization separates an operating system or application from the underlying sys-

tem resources. DSU has been implemented using virtualization following both the

interrupt-update-restart mechanism, and a combination of the function-pointer indi-

rection and data-access indirection mechanisms.

The Microvisor [49] virtual machine supports online updates of operating systems.

It runs applications on one virtual machine while it starts and reconfigures a second

virtual machine with an upgraded OS and applications. However, updates do not

preserve volatile state and interrupt the provided service (open network connections

are lost).

LUCOS [61] uses virtualization to update live operating systems without requiring

quiescence following an approach similar to POLUS [28]. It uses two features of

virtualization to apply updates. First, it relies on the ability of the Virtual Machine

(VM) to write protect the memory areas that hold old and new global variables.

Access to these variables raises an exception that returns control to the VM. Second,

the VM offers the ability to gain control of execution after a write operation to the

data finishes. This is implemented by having the VM unprotect access to the global

variables and immediately enabling the single-step debug flag of the processor. When

the write operation completes a debug exception is raised that returns control back

to the VM. Using these virtualization features LUCOS allows coexistence of both the

old and new versions of variables and consistency between them is synchronized using

state transfer functions. It cannot update active functions and stack-resident data

and does not support updates to multi-threaded kernel subsystems.

JVOLVE [84] extends the Jikes RVM [85] with DSU capabilities. It uses three

features of virtualization to apply updates. First, it uses classloading to add, delete, or

change existing classes, including adding, removing, or replacing fields and methods.

This is similar to binary instrumentation. Second, it uses a subset of VM safe points

as DSU update points, because the VM guarantees that at these points it is safe to

perform garbage collection and apply updates on the heap. Third, it uses on-stack

replacement [86] to recompile updated methods that refer to classes that are updated.

However, these approaches have limitations. Classes that need to be updated (instead

of classes that refer to classes that need to be updated) cannot be updated if they

are active on the stack. There is also no guarantee that JVOLVE will reach a DSU

safe update point. Other JVM-based DSU systems are also unable to update active

code [87, 88, 89] or require data-access indirection.

30

3.6 Checkpointing

Checkpointing saves the current state of an application to disk and allows resuming

an application from that state at a later time. It has been implemented in single-

threaded applications [90], distributed systems [91], high performance computing clus-

ters [92, 93], and for heterogeneous systems [94, 95, 96]. It supports saving the state

of pointers [97] and forces all threads to stop in order to safely checkpoint the state

of a multi-threaded application [96]. The major limitation of checkpointing is that it

interrupts the service provided by the application, but some of the existing working

on checkpointing has interesting aspects that could be extended to support DSU.

In particular, some of the techniques used in this dissertation originated in work on

checkpointing.

Fünfrocken [98] applies source-to-source transformations to instrument Java appli-

cations for checkpointing and migration. Source-to-source transformation is chosen,

instead of modifying the Java virtual machine, because the Java virtual machine for-

bids stack manipulation by bytecode for security reasons. The transformation inserts

multiple if-statements that allow bypassing code when state is rebuilt. Function sig-

natures are extended to supply as a parameter to every function call the state that

will be restored. Checkpoints are manually inserted (based on a programmer’s esti-

mate) only in methods that might encounter these points when the application runs.

A checkpoint is acquired when all threads stop at the checkpoints, but the possibility

remains open that one of the threads will block or never reach a checkpoint, delaying

the acquisition of a checkpoint and initiation of migration indefinitely. This approach

leads to modest overhead 4%-19% in synthetic applications but it has not been ap-

plied in real-world applications. It also enlarges the final bytecode by 350% due to

the implementation of state saving.

c2ftc [94] applies portable checkpointing for heterogeneous architectures. During

normal execution mode, the instrumentation continuously saves a continuation point

(discussed in more detail in Chapter 3.7) that can be used to rebuild the stack when

restoring the checkpoint. When a checkpoint is requested the local stack state is

saved using a macro. The stack is recursively unrolled by such macros (one per

function) which save each stack frame. When restoring, a top-level switch-statement

restores each stack frame and the continuations. Since this approach uses macros for

stack saving, and multiple checkpoints could be placed in a function, the state-saving

instrumentation through macros can enlarge the application size considerably (like

[98]).

Karablieh and Bazzi [97] propose an approach similar to c2ftc [94] that is truly

heterogeneous and extends checkpointing to multi-threaded applications. It modifies

function signatures to pass the checkpointing mode variable as an additional parame-

31

ter but this introduces overhead and is problematic with library functions (like [98]).

Both this work and c2ftc have not been applied in real-world applications.

Shanhbhag [62] checkpoints an application (based on [97]) and transforms the

checkpoint file to be readable by the new version of the application. The new version

is restarted using the transformed checkpoint file. An equivalence algorithm detects

and maps persistent program states, but the algorithm is not control-flow sensitive

and makes conservative assumptions that limit the complexity of updates that can be

applied. For example updated functions are only allowed to access global variables

but not modify them (similar to OPUS [26]) and datatype updates are not supported.

AutoPod [99, 50] facilitates updating operating systems by combining checkpoint-

ing with a virtualized environment of isolated process domains [100] implemented

with system call interception and chroot(). It suspends, checkpoints, and migrates

processes across different versions of the operating system. However it does not pre-

serve the application state maintained by the operating system, such as open network

connections, and does not update the applications.

3.7 Continuation-Style Programming

Continuation-style programming [101] is a programming style in which no function

is ever allowed to return and functions always accept the current state as an explicit

parameter: the continuation. This execution continuation is an important part of

the state of the application. The ability to update the continuation can be useful in

applying DSU because it can force the new version of an application to resume from

a different execution point than the execution point from which the old version of

the application was paused. Resuming from a different execution point is necessary

because it corresponds to updating the Program Counter and the return address ra of

a stack frame. This programming style has been used to apply DSU through a general

source-to-source transformation. The transformation converts applications that have

not been developed in continuation-style to become continuation-style applications.

Execution continuation was offered first in LISP using the call/cc (call-with-current-

continuation) control operator [102]. It has been been applied in ML [103] and Mach

3.0 [104], and, to some extent, in Java [98, 105, 86] and K42. It has also been applied

for task management [106, 107] and for device drivers [108].

An early design of stack reconstruction based on continuation-style programming

has been applied for efficient large-scale process-oriented parallel simulations [63].

Under this design, stack state for local variables is allocated on the heap, accessed

through data indirection and remains alive until global simulation time. Continuation

points are continuously saved during execution. This work could have been extended

for DSU by incorporating stack unrolling, preserving local variables on the stack,

and addressing the problem of forcing all threads to stop. Still, it improves over

32

previous simulation work with continuations [109] or a thread-based approach [110]

that used the POSIX setjmp()/longjmp() calls for context-switching. Note that while

the setjmp()/longjmp() calls can be used to save and restore stack frames they cannot

update the functions that are restored or map to a new state.

Sekiguchi et al. [105] proposed an approach for Java and C++ that applies source-

to-source transformations to emulate continuations and apply checkpointing. This

approach unrolls stack frames using the exception handling feature of the program-

ming language. Thus it cannot be applied generally to other languages that do not

offer exception handling, like C. However it could have been extended for DSU had it

addressed the need to safely stop multi-threaded applications. The approach creates

a method and a class for every instrumented method. The created class represents the

possible execution states of the method. Function signatures are extended (similar to

Fünfrocken’s approach [98]) to supply as a parameter to every function call the state

that will be restored. This work identifies that checkpoints should not be captured

if library functions are on the stack, which is common in graphical user-interface

applications that use callback functions, but does not safeguard from this condition.

In comparison to Fünfrocken [98], it employs a top-level switch-statement instead of

multiple if-statements when state is restored, which reduces the size of instrumented

code. It further reduces the size of instrumented code by restoring local variables just

once per method, instead of per continuation.

Légaré [111] also describes a source-to-source transformation of Java programs to

use continuations. In comparison to other Java approaches [98, 105], it does not need

to modify function signatures or introduce extra classes to restore state. Although it

can unroll the logical stack saved for the current stack frame, it is unable to unroll the

execution stack of the virtual machine. Hence it is unable to support continuations

of functions on all stack frames.

Only recently has continuation-style programming been explored for DSU. Shan-

hbhag’s [62] checkpointing-based updating system (see Chapter 3.6) relies on contin-

uations for restoring application state. It could have applied DSU without service

interruption if stack unrolling had been developed. A recent DSU software architec-

ture for Haskell [112] based on continuations proposes separating between code and

state and supplying the state as a parameter when updating (similar to [98, 105]).

But it is unclear how existing applications could be easily converted to follow this

architecture. More recent work also outlines how continuations have the potential to

apply DSU [113, 114].

3.8 Conclusion

Existing work has explored DSU through extensible design of operating systems, bi-

nary instrumentation, dynamic updating, replication, virtualization, checkpointing,

33

and continuation-style programming. Most of these approaches have two main limi-

tations. They are either unable to update active functions and data or do not apply

updates immediately. Through its application for checkpointing, continuation-style

programming has demonstrated that it can be used as the underlying mechanism for

applying DSU, although it has not been tested on real-world applications.

A lot of systems update only function code with binary instrumentation [51, 52, 53,

57, 58], but updates are limited, as these systems aim to provide performance profiling

and debugging capabilities. Another popular approach is to use table indirection [115,

116]. Most systems use one of these approaches to allow old and new versions of code

and data to coexist [117, 116, 80, 32, 28, 33, 37] but may require indirection to

access the data [116, 32, 33, 37]. To update data safely, some systems rely on object

encapsulation [24, 31, 35]. Other systems may not be able to update both the data and

active code without quiescence [24, 23, 80, 35, 61, 28] unless they are supplemented

with conservative analyses that provide safety guarantees [26, 32, 38, 39]. Few

systems can update long-lived loops [29, 32, 33, 36].

The only DSU system that can apply an update without waiting indefinitely for a

safe update point is the K42 operating system [35]. However, K42 is specially crafted

to be updateable and its approach cannot be generally applied to existing operating

systems and applications without significant re-engineering. Recent work proposes a

specially crafted architecture for applications [112].

Continuation-style programming has been adopted for checkpointing and can be

used for DSU. Checkpointing systems extend function signatures to pass the continu-

ation state [98, 105, 97, 62] and continuously track the continuation point [94, 62, 97].

Some systems rely on constant data-access indirection [63, 97], on the exception han-

dling mechanism of the programming language [105] to unroll the stack, or add ex-

cessive code to save stack state[94, 98].

Chapter 4

DYNAMIC SOFTWARE UPDATE SYSTEM

This dissertation provides a DSU system that implements the whole-program update

mechanism described in Chapter 2.6.4. Recall that the whole-program update mech-

anism allows the mapping of the whole state of the old version of the application to

a state of the new version of the application.

The DSU system provided, UpStare, incorporates a number of elements to pro-

vide immediate dynamic updates for multi-threaded (including multi-process) appli-

cations. To map the state of one thread, it provides a stack reconstruction mechanism

that allows the unrolling of the execution stack of the old version and then reconsti-

tuting a stack of the new version. Stack reconstruction applies a default mapping that

transforms global variables, stack frames, and execution continuation points of the

old version to global variables, stack frames, and execution continuation points of the

new version. These default mappings can be overridden by the user through an inter-

face provided by the system. To support the update of multithreaded applications,

UpStare forces all executing threads to block and then applies stack reconstruction

to every thread. To provide bounded delay, UpStare transforms blocking system calls

into non-blocking calls. To provide additional safety guarantees, UpStare enforces

user-defined safety constraints to update safely from a particular application state.

The rest of this chapter describes the architecture of UpStare, explains how stack

reconstruction works, how the default state mappings are calculated, how the user can

override these default mappings through a well-defined interface, and how updates of

multi-threaded applications including those with blocking system calls are supported.

Chapter 5 describes how the system can enforce user-defined safety constraints.

4.1 System Architecture

UpStare is an architecture (and operating system) independent tool suite comprising

a compiler to generate updateable programs, a runtime environment for dynamically

applying updates, a patch generator, and a dynamic updating tool. It compiles multi-

threaded applications to be updateable, automates generation of dynamic updates

with some help from the user, and applies updates safely. UpStare is designed as a

DSU solution for the widely used C programming language. C is a relatively low-level

35

language and it is expected that a solution for a low-level language can be applied in

principle to higher-level object-oriented languages like C++.

Fig. 1. UpStare System Architecture.

Figure 1 shows the high-level system architecture, which is similar to those of

other DSU systems. Users compile the source code of the original version of an

application with the UpStare compiler and start the application. When a newer

version of the application becomes available, users supply the source code of both

the original version and the new version to the patch generator to prepare a dynamic

software update patch in source code format. Users compile the source code update

patch with the compiler to produce an executable update patch and place the patch

locally on the machine executing the application that will be updated. The update is

initiated with the dynamic updating control tool which issues update requests through

a TCP connection to the executing application. The update requests are serviced by

the dynamic updating runtime environment, which is automatically added in the

original version of the application by the compiler.

36

Applying updates involves (1) pausing the application, (2) mapping the applica-

tion state, and (3) resuming execution. These three actions are coordinated by the

runtime environment. First, the runtime environment forces the application to block

all threads (and all processes) with the help of update points (described next), after

it verifies that the update will not violate user-defined safety constraints. Ensuring

all threads are blocked is necessary to guarantee that the update will be atomic for

the application. Second, the runtime environment puts the application in stack re-

construction mode which unrolls stack frames one by one and saves their contents

until the main() function is reached. At this point the entire old program code Π and

old program state s are available for modification by calling the state transformer

function S. Global variables are mapped to their new version and the stack is then

reconstituted by replacing old versions of functions, local variables, and formal pa-

rameters with their new versions. Finally, control returns to the runtime environment

that puts the application back in normal execution mode coordinates resuming all

threads (and all processes).

4.1.1 Compiler

The compiler applies high-level, source-to-source transformations that convert appli-

cations written in C to be dynamically updateable. It is written in OCaml using the

CIL framework[118] v1.3.6 and is architecture (and operating system) independent.

Users replace in their build process (e.g. Makefiles) calls to an existing compiler,

like the GNU C Compiler (gcc), with calls to the UpStare compiler (hcucc.pl). No

source code modifications by a user are required in existing applications to make them

updateable. The compiler transforms applications to implement the whole-program

update mechanism using stack reconstruction. It also inserts update points in the ap-

plications, which are the points where the application can be paused for the update

to be applied. The update points are a subset of possible Program Counter locations

for the application.

4.1.2 Runtime Environment

The runtime environment is written in C, has a small (64KB) memory footprint,

and is statically linked into the updateable application. Requests for an update are

transmitted to the runtime on a TCP connection and result in the runtime loading the

dynamic update patch using dlopen(). The runtime then uses a collection of routines

and data structures to coordinate a safe update by forcing all threads to block and

enforcing user constraints. To determine if all threads have been blocked, the runtime

tracks the locking activity of threads in its data structures since the application first

begun executing.

37

4.1.3 Patch Generator

It is important to provide a mapping to the new state with minimal user involvement.

A DSU system that minimizes user input is more likely to be adopted. UpStare

provides a patch generator that partially automates this state mapping. The default

mapping (see Chapter 4.3) produced by the patch generator is effective in practice,

and can be further fine-tuned or bypassed by the user.

Given the source code of the old and updated programs, the patch generator au-

tomatically produces the source code for a dynamic update patch. The patch in-

cludes the newer versions of functions, new global variables, and the old and updated

datatype definitions of modified variables, either global or declared on the stack. The

patch generator also automatically produces data transformers to map global vari-

ables and stack transformers to map stack-resident variables. The patch generator

does not generate execution continuation transformers, but the runtime environment

attempts a simple mapping that preserves continuations.

4.2 Stack Reconstruction

The UpStare compiler automatically instruments programs with code that will be

able to unroll and reconstruct the stack. The instrumentation is applied through

a source-to-source transformation and requires no user input. This instrumentation

produces a program that is semantically equivalent to the uninstrumented version of

the program. The instrumented code that adds the ability to unroll and reconstruct

the stack is not executed under normal execution mode. This code is guarded by

global flags that activate the code only if the program is in stack reconstruction mode.

A program is placed in stack reconstruction mode when all threads are blocked, after

an update is requested by a user. Stack reconstruction consists of two major steps

which are described next:

1. Saving the existing stack state when unrolling;

2. Restoring the mapped state when reconstructing.

Saving and Unrolling. Before each stack frame is unrolled, the stack state is

saved automatically by the instrumentation code. For each function, the instrumen-

tation produces one wrapper function that efficiently saves the stack state of the

function. The wrapper function is called to save the stack state and then a return

instruction is issued to unroll the stack frame to its caller. This continues recursively

until the entire stack is saved and unrolled for every thread. At that point the entire

state of the application is saved and is available to be mapped. A state transfer

function is invoked by the runtime to automatically map the state of the old version

38

of the application to the state of the new version. This state transfer function is au-

tomatically generated by the patch generator but can be fine-tuned or overridden by

the user. The state transfer function can be implemented to map the entire state of

the application, but UpStare chooses to map only the global variables at this point to

simplify the implementation. The default state mapping is described in more detail

in Chapter 4.3.

Stack reconstruction needs no input from the user to define how high should stacks

be unrolled, or which threads should be reconstructed: by default all threads are

unrolled to the top, and they are all updated. However, stack reconstruction is

flexible enough to apply updates defined at a fine grain. The user can define which

threads should be updated, and how far up should the stack of a thread be unrolled.

For example, a user may decide to reconstruct the stack of only one thread to apply

a minor security fix to only one function instead of update the whole program.

1
2
3
4
5
6
7
8 funct ionA ()
9 {

10 char a ;
11 int param ;
12 . . .
13
14 funct ionB (param) ;
15
16
17
18
19
20
21
22 }

1 typedef struct {
2 char a ;
3 int param ;
4 } s t a ck f unc t i onA v1 t ;
5
6 (∗ f unct i onB ptr) (int) = &funct i onB trans f ormed ;
7
8 funct i onA trans f ormed ()
9 {

10 s ta ck f unc t i onA v1 t l o c a l s ;
11
12 . . .
13 f unc t i onB 6 be f o r e :
14 funct i onB ptr (l o c a l s . param) ;
15 i f (may reconstruct && must r econs truct ()) {
16 i f (must unro l l up (‘ ‘ funct ionA ’ ’)) {
17 save f r ame funct i onA (& l o c a l s , 6) ;
18 return ;
19 }
20 goto f unc t i onB 6 be f o r e ;
21 }
22 }

(a) Non-Instrumented (b) Instrumented

Fig. 2. Transformation of Function Calls for Stack Reconstruction.

Figure 2 shows an example of how functionA() is transformed to check upon re-

turning from the callee functionB() whether the stack should be reconstructed. Note

that may reconstruct (line 15) is a global flag raised only in reconstruction mode to

improve performance. If must reconstruct() is true (line 15; this thread should partic-

ipate in reconstruction) and execution should be unrolled (line 16; must unroll up() is

true: the topmost frame, by default, has not been reached yet; but the user can specify

that unrolling stops at a different frame), the stack frame and continuation point 6 are

saved (line 17) and functionA() returns to its caller (line 18). Returning to callers con-

tinues until the start of the program is reached: the main() function in single-threaded

39

applications or the start routine passed to a pthread create() call for multi-threaded

applications. Otherwise unrolling should stop (line 16; must unroll up() is false). A

goto statement (line 20) resumes execution from functionB 6 before (line 13) and

descends in functionB() for reconstruction (line 14).

Mapping and Reconstructing. After the global variables are mapped, the stack

of each thread begins being reconstructed. Reconstruction restores the local variables

and formal parameters of a function, and also its execution continuation point. Re-

construction calls the new version of the main() function of the application, passing

the updated formal parameters, to initialize the function on the stack. As soon as

this function is entered, reconstruction automatically restores the stack state of the

function by invoking a wrapper function, automatically produced by the instrumenta-

tion, that efficiently restores all local variables in the function. This wrapper function

invokes a stack transformer (which can be fine-tuned or overridden by the user) that

maps the state of the old version of the stack frame to the state of the new version of

the stack frame. The execution continuation is also restored using a switch-statement

that forces execution to descend (using a goto jump, and then calling the callee) into a

callee function as part of the reconstruction process. This is repeated recursively until

the entire stack is restored. At this point the update is complete and the program is

ready to resume execution.

Figure 3 shows an example of how execution is resumed from functionA(). If on

function entry the stack should be reconstructed downwards (line 6), the stack frame

is restored (line 7). A switch-statement (line 8) maps the continuation point 6 (line

13) to continuation label functionB 6 before (line 19) using a goto statement (line

14). Execution flow continues by calling functionB() (line 20). When the update is

complete (line 21; may reconstruct is false: execution is no longer in reconstruction

mode) and functionB() finishes, execution continues normally (from line 28).

Supporting thread entry-points. Stack unrolling recursively issues a return

instruction until all stack frames are unrolled. But issuing a return instruction in

the main() function or the start routine passed to a pthread create() would result

in the application (or thread) to terminate permanently. Still, it is desirable to be

able to update these functions as well, which means it is necessary to issue a return

instruction in these functions.

To allow the update of main() or thread entry-points, calls to such functions are

initiated from a wrapper function. Stack unrolling recursively issues a return in-

struction until the wrapper function is reached but at that point unrolling stops to

avoid application (or thread) termination. When reconstruction begins, it first de-

scends into main() or a thread entry-point and allows these functions to be updated.

To accurately discover thread entry-points UpStare uses the points-to alias analysis

provided by CIL.

40

1 funct ionA ()
2 {
3 char a ;
4 int param ;
5
6
7
8
9

10
11
12
13
14
15
16
17
18 . . .
19
20 funct ionB (param) ;
21
22
23
24
25
26
27
28
29 }

1 funct i onA trans f ormed ()
2 {
3 s ta ck f unc t i onA v1 t l o c a l s ;
4 int cont inuat i on ;
5
6 i f (may reconstruct && must r econs truct ()) {
7 r e s to r e f r ame f unc t i onA (& l o c a l s ,& cont inuat i on) ;
8 switch (cont inuat i on) {
9 . . .

10 case 3 :
11 goto t r y t o upda t e 3 a f t e r ;
12 . . .
13 case 6 :
14 goto f unc t i onB 6 be f o r e ;
15 . . .
16 }
17 }
18 . . .
19 f unc t i onB 6 be f o r e :
20 funct i onB ptr (l o c a l s . param) ;
21 i f (may reconstruct && must r econs truct ()) {
22 i f (must unro l l up (‘ ‘ funct ionA ’ ’)) {
23 save f r ame funct i onA (& l o c a l s , 6) ;
24 return ;
25 }
26 goto f unc t i onB 6 be f o r e ;
27 }
28
29 }

(a) Non-Instrumented (b) Instrumented

Fig. 3. Transformation of Function Entrypoints for Stack Reconstruction.

Supporting signal handlers and library functions. Signal handlers and li-

brary functions are incompatible with stack reconstruction and need special support.

Issuing a return instruction in a signal-handler returns execution control to the op-

erating system and prevents unrolling from completing. Similarly, unrolling does not

complete if a return instruction is issued in a function that has been invoked by a

library function because it returns execution control to the library.

The memory address of signal handlers, defined with sigaction() and signal(), is

stored inside the operating system. This information needs to be updated to refer

to new signal handlers during an update. To handle this part of the update in

an operating system independent way, UpStare avoids resetting the signal handlers

and instead initiates calls to the signal handlers using function pointer indirection

from a wrapper function. This allows UpStare to update the function pointer in

the application when a signal handler needs to be updated. Signal handlers are also

instrumented to raise a flag on entry and reset the flag before exiting. Requests

to update are rejected when a program is executing a signal handler. They are

immediately satisfied when the program continues in normal execution mode, and

41

can update signal handlers at that point. Signal handlers are discovered using points-

to alias analysis provided by CIL.

A similar approach is followed for library functions that accept user functions as

parameters. Special support is needed for these functions because it is assumed li-

brary functions have not been compiled with instrumentation for stack-reconstruction.

For example, vsFTPd uses the qsort() library function which accepts a user-supplied

sorting function as a parameter. Such user-supplied functions return execution to the

library and are incompatible with stack reconstruction. They are handled similar to

signal handlers. The difference between library functions and signal handlers is that

functions supplied as parameters to library functions do not need to be called from

a wrapper function. The wrapper function is not needed because UpStare ensures

there is no possibility for the user-supplied function to be updated while a library

function is active on the stack.

Redirecting function calls. Unlike other DSU systems, continuously redirecting

function calls is not necessary for stack reconstruction. The redirection of function

calls is not needed if stack reconstruction executes at a default mode of always un-

rolling to the thread entry-point wrapper function. It is only the thread entry-point

wrapper function that needs this redirection to call the new version of the thread

entry-point function. All other function calls can be issued directly. Still, continu-

ous redirection of function calls is implemented to make stack reconstruction a more

flexible mechanism that can be used to implement other updating models.

In the current UpStare prototype function-pointer indirection is used to execute

function calls. For each function f v1(), a global pointer variable f ptr is created

that points to &f v1 and calls to f v1() are transformed to calls to *f ptr(). This

indirection allows changing the version of the function by modifying directly the value

of a pointer in memory. Continuous indirection allows updating a function without

forcing all threads to block in a multi-threaded program.

Besides function calls, it is also necessary to wrap invocations of function point-

ers, because function pointers could be passed as parameters to functions and it is

desirable to be able to update to a new version the function they point to. For each

function pointer *g v1(), a wrapper function wrap g v1() is created that calls it. This

is an effective way of allowing updates to function pointers without points-to alias

analysis.

Inserting update points. The runtime environment forces an application to

pause with the help of update points that are inserted by the compiler. Update

points are automatically inserted at the beginning of each function and each loop.

These points are selected as update points because these points are encountered often

to allow immediate updates. As will be explained in Chapter 4.5, all locks are also

selected as update points to force all threads of an application to pause.

42

1 funct ionA ()
2 {
3 char a ;
4 int param ;
5
6 while (cond i t i on)
7 {
8
9

10
11
12
13
14 . . .
15 }
16 }

1 funct i onA trans f ormed ()
2 {
3 s ta ck f unc t i onA v1 t l o c a l s ;
4
5 . . .
6 while (cond i t i on)
7 {
8 i f (must update) {
9 coord inate update top (& l o c a l s , 3) ;

10 return ;
11 t r y t o upda t e 3 a f t e r :
12 coordinate update bottom () ;
13 }
14 . . .
15 }
16 }

(a) Non-Instrumented (b) Instrumented

Fig. 4. Insertion of an Update Point at the Beginning of a Loop.

Figure 4 shows an example update point inserted at the beginning of a loop. When

the must update flag is raised (line 8; an update is requested), the current thread

participates in synchronization to block all threads. The current continuation point

3 and the stack frame of functionA() are saved (line 9), and execution returns to the

function’s caller (line 10). When the stack is reconstructed and functionA() is called

again (see lines 10-11 in Figure 3b), execution flow resumes from try to update 3 after

(line 11).

The current implementation is restricted to a coarse-grain activation of update

points using a single must update flag. However, it is straightforward to support

more fine-grain selective activation by dynamically disengaging update points. For

example, the user could specify when requesting an update that (say) all update points

except 250-259 should effect the update. Such a restriction could also be enforced by

defining a transaction-safety constraint.

Exporting local variables. The dynamic software update patch is loaded in

the application using a programming interface to the dynamic linking loader. The

dlopen() library call loads the patch and state transformers included in the patch are

accessed using dlsym(). This programming interface is successful only if the patch

references global variables. References to variables that were declared local in the

original version (using the static keyword) are not accessible after dynamic loading

and lead to system exceptions when executing state transformers. To address this

limitation, the UpStare compiler removes the static keyword from all local variables

and exports them to global.

43

4.3 Default State Mapping

UpStare provides a default state mapping which hopefully matches closely what the

user desires, but there are no guarantees for that. The mapping relies on the user for

verification of its validity. For the cases that were tested, the mapping has proven

to be an effective heuristic that requires minimal user involvement. The mapping is

automatically generated and applied at a high-level (source-code format) with the

patch generator. Automatically generating the mapping considerably reduces the

effort required by the user in producing the mapping and makes it easier to adopt

the DSU system. For the cases where automatically producing parts of a mapping

is not possible, the patch generator warns the user and the user can supplement the

mapping with a custom mapping (as will be described in Chapter 4.4).

The design of stack reconstruction makes it possible to map the program state

using a single state transfer function. However, our implementation of mapping the

program state uses multiple independent state transfer functions. These are:

1. Datatype transformers that map global variables on the heap h,

2. Stack transformers that map local variables l and formal parameters p in stack

frames Tsf (but not the return address ra), and

3. Execution continuation transformers that map the Program Counters TPC of

each thread and the return address ra of each stack frame.

These state transfer functions are applied together in a single, atomic step. Note

that using multiple state transfer functions is not a limitation of the stack reconstruc-

tion design. The stack reconstruction design allows applying a single state transfer

function after the state of the old version is saved. But the current implementation

of multiple state transfer functions is effective in practice and the system allows the

user to bypass it if more flexibility is desired.

The remaining of this section describes the default state mapping of UpStare in

more detail. It describes the default datatype mapping, default stack mapping, and

default execution continuation mapping. Chapter 4.4 describes the interface that is

available to the user to override these mappings.

4.3.1 Default Datatype Mapping

For each changed datatype the patch generator produces a datatype transformer.

The transformer may be invoked multiple times by other datatype transformers or

by stack transformers as needed. The datatype transformer is used to update global

variables on the heap h, local variables l, or both, depending on where the datatype

is used.

44

For every global variable whose datatype τ has changed, a new global variable of

the new datatype τnew is allocated in hnew. If the datatype is a compound datatype

(such as a struct or union in C) and it has been extended, the datatype transformer

copies the old fields (only new fields must be initialized by the user). If the datatype is

reduced, the datatype transformer copies the remaining fields with no user assistance.

If the variable is an array, a datatype transformer is applied on all array elements.

If the datatype change simply extends an array with more elements (such as the

parseconf uint array in vsFTPd which is updated to offer more configuration options),

a new array with more room is allocated and the values of all old elements are copied.

1 void up s t a r e t r a n s f o rme r v s f s e s s i o n v 1 2 0 t o 1 2 1 (struct v s f s e s s i o n v 1 2 0 ∗old ,
2 struct v s f s e s s i o n v 1 2 1 ∗new)
3 {
4 ups ta r e t r an s f o rmer mys t r (&old−>us e r s t r , &new−>u s e r s t r) ;
5 up s ta r e t r an s f o rmer mys t r (&old−>anon pas s s t r , &new−>anon pa s s s t r) ;
6 up s ta r e t r an s f o rmer mys t r (&old−>r n f r f i l e n ame s t r , &new−>r n f r f i l e n am e s t r) ;
7 . . .
8
9 new−>p l o ca l add r = old−>p l o ca l add r ;

10 new−>p remote addr = old−>p remote addr ;
11 new−>p a s v l i s t e n f d = old−>p a s v l i s t e n f d ;
12 new−>p por t sockaddr = old−>p por t sockaddr ;
13 . . .
14
15 // Must i n i t i a l i z e the se new f i e l d s
16 new−>ema i l pa s sword s s t r . PRIVATE HANDS OFF p buf = 0 ;
17 new−>ema i l pa s sword s s t r .PRIVATE HANDS OFF len = 0 ;
18 new−>ema i l pa s sword s s t r . PRIVATE HANDS OFF alloc bytes = 0 ;
19 }

Fig. 5. Transformer for Datatype struct vsf session (vsFTPd v1.2.0 to v1.2.1).

Figure 5 shows an example of a default datatype transformer produced automat-

ically by the patch generator. It transforms datatype vsf session, which is a large

struct, in vsFTPd from v1.2.0 to v1.2.1. This struct contains multiple fields of

datatype mystr, thus the vsf session datatype transformer invokes the transformer

for the mystr datatype once for each field of the struct (lines 4-7). For fields of prim-

itive datatypes, the fields are copied directly (lines 9-13). Currently, the datatype

transformer does not automatically initialize new fields and leaves that task to the

user (lines 16-18). However, this could be supported with more engineering effort in

the patch generator since the initialization values are known in the new version of the

source code.

In some cases a datatype change suggests that the semantics of the datatype have

changed. For example, a datatype may change from a char to a long, or from an int to

an int*. In such cases the patch generator produces an empty datatype transformer

and warns the user to manually implement the transformer.

45

After datatypes are updated to their new versions the old versions are never ac-

cessed again. Memory allocated for global variables of the old datatypes remains

unused. Memory allocated for local variables of the old datatypes is reclaimed when

the stack is unrolled and new memory for local variables is allocated when the stack

is reconstituted.

Mapping pointers. Mapping pointers of datatypes known at compile-time is

straightforward. However, void* pointers are cast at runtime to generic datatypes

and are harder to map. Support for tracking pointer types at runtime is needed to

invoke the appropriate datatype transforms. An approach for accurate tracking of

pointer types has been developed in previous work [97]. This approach involves track-

ing the datatype of pointers when they are cast, continuously tracking all memory

pointer assignments, and using indirection through a memory refractor to access the

pointer values. After an optimization [119] this approach reports overhead of 3.4-5.7%

when tested on a program without pointer operations. When tested on the same pro-

gram (and with the optimization), but with pointer operations, this approach reports

overhead of 38-45.5%.

This approach of mapping pointer variables is not yet integrated with UpStare.

The performance of tracking pointer types at runtime can be significantly improved

if the existing approach can be augmented to track at runtime only the datatype of

a pointer. It should not continuously track all memory pointer assignments or use

indirection to access the pointer values because that incurs considerable overhead.

Instead an alternative approach is proposed. When it’s time to map pointer values,

two elements can be taken into account for each pointer: the memory address of the

pointer, and the size of the tracked datatype. Combined, this information provides a

set of ranges of allocated memory areas used for pointers. The offsets of the pointers

within these memory areas can be used to determine which datatypes (e.g. fields of

structs in C) they were pointing to and how to map them to the new versions.

However this approach may be unable to detect mappings for some pointer variables

that were manipulated in unexpected ways by the program, such as dividing a pointer

value by two. For such cases, the user can guide the pointer mapping or provide

transaction safety constraints that eliminate the occurrence of updates when such

pointer values may be alive. It is also possible to identify such cases through static

analysis, and automatically produce transaction safety constraints for them.

4.3.2 Default Stack Mapping

The patch generator automatically produces a stack transformer for each function

in the application. The same process of generating default datatype transformers

is followed for every local variable whose datatype has changed, for every function.

By default, each stack transformer preserves all local variables in lnew based on their

46

original values in l. Preserving these values involves invoking the appropriate datatype

transformer of a local variable if the datatype is of a compound type (struct or union),

or simply copying the variable if it is a primitive type. Only new local variables need

to be initialized to a default value by the user. The new formal parameters pnew of a

stack frame are also automatically preserved from their old value in p. This happens

indirectly when stack reconstruction descends into a callee stack frame, through a

function call, to reconstitute the callee. If a function signature is changed, such as

reduced by one field, the stack transformer preserves the remaining fields with no

user assistance. If the function signature is extended by one field, the user needs to

initialize only the new field.

Producing stack transformers is a major difference from other DSU systems [32, 28].

Although the patch generator produces a single stack transformer for each function,

the transformer may need to map the state differently depending on the execution

point at which the function was paused. This complicates the generation of stack

transformers because the stack transformer code needs to be able to dynamically

map the state differently depending on the execution point. The default stack trans-

formers produced by our patch generator currently do not dynamically account for

the execution point.

4.3.3 Default Execution Continuation Mapping

Execution continuation points define a correspondence to return addresses ra and

Program Counters TPC . Preserving execution continuation points ensures that after

the update execution will resume from where it was paused. There are two challenges

in preserving execution continuation. The first is how to select some execution points

to be continuation points. The second is how to identify these continuation points in

a way that makes it easy to preserve them without, or with very little, user input.

Execution continuation point selection and identification are described next.

Selection. UpStare selects as execution continuations points all points prior to

function calls and all update points. Update points are inserted in the beginning

of a function and in the beginning of loops, because these points are encountered

often enough to allow the runtime environment to regain control of the execution and

apply an immediate update. Locks are also treated as update points to guarantee

immediately regaining control of the execution in a multi-threaded application.

Continuation points are chosen as all points prior to function calls because these

points are necessary in reconstructing the stack. During reconstruction, execution

control flow needs to be guided to descend to a callee and reconstruct its stack frame,

and transferring control flow from the beginning of a function to a callee function

call achieves that. Continuation points are also all update points because reaching

the update point after the reconstruction finishes (the update completes) is necessary

47

to resume the program. In general, programs are resumed from the execution point

they were paused.

Selecting additional continuations points, such as one in every basic block, is not

necessary. That is because any additional code that should be executed after an

update, but before the continuation point, can be executed by the stack transformer.

Selecting more continuation points is straightforward.

Identification. To identify continuation points, UpStare follows the simple ap-

proach of assigning unique numeric ids to continuation points in the order they appear

in each function body. By default, UpStare saves and restores the continuation points

of each stack frame for all threads. It essentially maps continuation points with the

same enumerator in Π and Πnew. If the call stack of the application did not change,

the loop structure did not change, and no new function calls are issued in the body

of functions that are active on the stack then no continuation mappings are needed.

This mapping of continuation points is effective in practice for updates.

It is possible to improve the identification (not the selection) of continuation points

so that the input required by the user is minimized further. Under the current identi-

fication scheme of continuation points, it is expected that continuation points would

need mappings mostly when new function calls are issued in the body of functions

that are active on the stack, even if the call stack of the application and loop struc-

tures did not change. Instead of assigning numeric ids to a continuation point one

could instead use a string combining the name of the callee function and the ordinal

number of times it is called inside the caller function. This number is necessary be-

cause some functions are called multiple times, such as the die() function in vsFTPd

or elog finish() in PostgreSQL, and distinguishing between the continuation points

of each one is needed. Under this proposed identification scheme, the addition of

new function calls in the body of functions active on the stack would not alter the

continuation mapping and would need no input from the user.

4.4 User Interface

UpStare provides an interface to the user for mapping the state from the old version

to the new version. The interface allows users to specify datatype transformers, stack

transformers, and execution continuation transformers. These transformers expose

to the user a copy of the old state of each transformer (e.g. the value of a variable

of an old datatype) and allow the user to construct the new state. The transformers

developed by the user are supplied to the compiler of updateable programs to produce

a dynamic software update patch. Alternatively, if the user wants help in producing

the transformers the user can use the patch generator.

The remaining of this section describes how datatype transformers, stack trans-

formers, and execution continuation transformers can be developed by the user.

48

4.4.1 Datatype Transformers

UpStare provides an interface for implementing a transformer that updates all global

variables on the heap h. For each global variable than needs to be updated, it is

expected that the user declares a new global variable and implements a mapping that

copies the values of the old global variable to the new global variable. Since some

global variables may be instances of the same datatype, it is beneficial for a user to

implement a general datatype transformer, and then apply this transformer in all

variables of that datatype (as already shown in Figure 5). Thus, the transformer for

global variables often calls multiple, individual datatype transformers that are used to

update global variables, one call per variable instance. These datatype transformers

are reusable. They can also be called by stack transformers to update instances of

local variables l and formal parameters p on the stack. The global transformer can

also initialize global variables.

1 extern struct p a r s e c o n f s t r s e t t i n g p a r s e c on f s t r a r r a y [2 6] ;
2 struct p a r s e c o n f s t r s e t t i n g p a r s e c on f s t r a r r a y v 2 0 0 [2 9] ;
3 int tunab l e no l og l o ck ;
4 int t un ab l e s s l e n ab l e ;
5 int tunab l e a l l ow anon s s l ;
6 . . .
7
8 int ups ta r e g l oba l t r an s f o rmer v200 ()
9 {

10 u p s t a r e t r a n s f o rme r p a r s e c o n f s t r s e t t i n g 2 6 t o 2 9 (&par s e con f s t r a r r ay ,
11 &pa r s e c on f s t r a r r a y v 2 0 0) ;
12 . . .
13
14 // I n i t i a l i z e new g l o b a l v a r i a b l e s
15 tunab l e no l og l o ck = 0 ;
16 t unab l e s s l e n ab l e = 0 ;
17 tunab l e a l l ow anon s s l = 0 ;
18 . . .
19 }

Fig. 6. Transformer (Part) for Global Variables (vsFTPd v1.2.2 to v2.0.0).

Figure 6 shows an example of the transformer (part) developed to map global vari-

ables in vsFTPd from v1.2.2 to v2.0.0. The user implements an additional datatype

transformer (invoked in line 10, but not shown) to map the global variable parsec-

onf str array (line 1) from the old version that contains 26 array elements to the new

version that contains 29 elements. This new version of the global variable needs to

be declared by the user (line 2). The user also initializes (lines 15-17) new global

variables (lines 3-5) as needed.

Implementing mappings of global variables is not enough. The user also needs to

supply to the compiler of updateable programs the new versions of the program code

that use the updated and new global variables. This means that for every updated

global variable the user needs to identify program code that uses the variable and

49

modify that code to use the new version of the variable. This can be time-consuming

and error-prone, and it outlines the need for a patch generator that automatically

produces such program code.

4.4.2 Stack Transformers

UpStare also provides an interface for modifying the stack of the old version of the

application. This is accomplished with a combination of stack transformers and exe-

cution continuation transformers. Stack transformers define how an old stack frame is

mapped to a new stack frame. Execution continuation transformers (discussed next in

Chapter 4.4.3) allow additional operations on stacks, such as inserting and removing

stack frames, and changing the Program Counter and return address of stack frames.

The system provides the user with access to the old local variables, and expects the

user to construct the state of the new local variables and the new formal parameters.

Note that for performance reasons the current UpStare implementation no longer

saves and provides the old formal parameters of a stack frame because these values

where not used. However, these values should be saved and made available to the

user, and reverting the implementation to enable this support is planned.

The old local variables are made available to the user in the stack transformer as

a formal parameter. This parameter is a void* pointer to a struct datatype that

groups all the local variables used by the old version of a function. A void* pointer is

used to simplify the implementation of the runtime system. Similarly, the new local

variables are also grouped in a struct pointer formal parameter and it is expected

that the user will save in this parameter the values of the new local variables. This

means the user needs to properly define the struct datatype of the new local variables.

Additionally, the new formal parameters are grouped in a void* pointer to a struct

and made available to the user. The user does not need to explicitly preserve the

formal parameters, because the values of the formal parameters are set during the

function call in the parent stack frames. However the user has the option of modifying

the formal parameters if necessary.

Stack transformers are also able to modify values held temporarily in computation

registers (e.g. the return value of a function call, which will be passed as a parameter

to a different function). Temporary values in registers are available at a high-level as

temporary local variables produced by CIL.

Figure 7 shows an example of a stack transformer that maps do file send ascii() in

vsFTPd from v1.1.3 to v1.2.0. The update adds the new local variable chunk size in

v1.2.0 (line 9). The user is required to define the struct datatype of the local variables

in the old (lines 1-5) and new (lines 7-12) versions. Given these datatype definitions,

the user implements the state transfer that preserves existing stack variables (lines

27-30) and initializes the new variable (line 33).

50

1 struct l o c a l d o f i l e s e n d a s c i i v 1 1 3 s {
2 struct v s f t r a n s f e r r e t r e t s t r u c t ;
3 unsigned int num to wr i te ;
4 int r e t v a l ;
5 } ;
6
7 struct l o c a l d o f i l e s e n d a s c i i v 1 2 0 s {
8 struct v s f t r a n s f e r r e t r e t s t r u c t ;
9 unsigned int chunk s i ze ; // This i s a new l o c a l v a r i a b l e

10 unsigned int num to wr i te ;
11 int r e t v a l ;
12 } ;
13
14 void u p s t a r e t r a n s f o rm e r d o f i l e s e n d a s c i i (void ∗ t r ans f orm stack to ,
15 void ∗ t r ans f orm stack f r om ,
16 void ∗ trans form params to)
17 {
18 struct l o c a l d o f i l e s e n d a s c i i v 1 2 0 s ∗ s t a ck to ;
19 struct l o c a l d o f i l e s e n d a s c i i v 1 1 3 s ∗ s tack f r om ;
20 struct f o r m a l d o f i l e s e n d a s c i i v 1 2 0 s ∗params to ;
21
22 s ta ck to = (struct l o c a l d o f i l e s e n d a s c i i v 1 2 0 s ∗) t r an s f o rm s tack to ;
23 s tack f r om = (struct l o c a l d o f i l e s e n d a s c i i v 1 1 3 s ∗) t r ans f orm stack f r om ;
24 params to = (struct f o rm a l d o f i l e s e n d a s c i i v 1 2 0 s ∗) trans form params to ;
25
26 // Preserve e x i s t i n g s tack v a r i a b l e s
27 u p s t a r e t r a n s f o rme r v s f t r a n s f e r r e t (&stack f rom−>r e t s t r u c t ,
28 &stack to−>r e t s t r u c t) ;
29 s tack to−>num to wr i te = stack f rom−>num to wr i te ;
30 s tack to−>r e t v a l = stack f rom−>r e t v a l ;
31
32 // I n i t i a l i z e new s tack v a r i a b l e
33 s tack to−>chunk s i ze = 65536;
34 }

Fig. 7. Stack Transformer for do file send ascii() (vsFTPd v1.2.2 to v2.0.0).

UpStare also exposes an interface to the user for accessing the old state of other

stack frames. Consider an application that contains functions f() and g() on the stack

and an update that needs to merge these two functions into one function called h().

The user needs to implement a stack transformer for h(), but the function signature

of stack transformers provides access only to the state of f(). In this case the user

can use an API provided by the UpStare system that allows access to the state of all

saved stack frames, including both f() and g().

4.4.3 Execution Continuation Transformers

UpStare provides the user with an interface that allows overriding the saved continu-

ation points and mapping them to different points. This allows the user to alter the

runtime call stack of the program and have it resume with a different call stack after

the update. For example, UpStare allows the user to add new stack frames, remove

stack frames, or replace a stack frame with the frame of a different function. It also

51

allows the user to select a different continuation point from which every stack frame

should resume.

The capability to modify execution continuation points is necessary in cases where

an update requires a thread to “escape” from execution of a long-lived loop or func-

tion. If an update completely removes a feature provided by a program, and a thread

was paused executing that feature, resuming the update requires the thread to break

out of the corresponding code providing that feature and continue from a different

execution point that is valid for the update. For example, an update from vsFTPd

v1.1.2 to v1.1.3 modifies parts of the function do sendfile() to execute only if a new

global flag is on. If the update requires the initial state of this flag to be off, execution

should break out of the loop and stop transferring the file. Modifying execution con-

tinuation points is also necessary when functions and loops are merged or partitioned.

1 struct v s f t r a n s f e r r e t v s f f t p d a t a i o t r a n s f e r f i l e (
2 struct v s f s e s s i o n ∗ p ses s , int remote fd ,
3 int f i l e f d , int i s r e c v , int i s a s c i i)
4 {
5 // Cont inuat ion poin t 1
6 i f (! i s r e c v) {
7 i f (i s a s c i i) {
8 // Cont inuat ion poin t 2
9 return d o f i l e s e n d a s c i i (p ses s , remote fd , f i l e f d) ;

10 } else {
11 // Cont inuat ion poin t 3
12 return d o f i l e s e nd b i n a r y (p ses s , remote fd , f i l e f d) ;
13 }
14 } else {
15 // Cont inuat ion poin t 4
16 return d o f i l e r e c v (p ses s , remote fd , f i l e f d , i s a s c i i) ;
17 }
18 }

Fig. 8. Continuation Points in vsFTPd v1.2.2

Figures 8 and 9 show an example of how the user can map the execution con-

tinuation when the function do file send binary() is removed from the stack and is

replaced with function do file send sendfile() in an update of vsFTPd from v1.2.2 to

v2.0.0. This is an update where the function is being renamed, although the new

version executes the same task and removes some source code compared to the old

version. Updating this function requires mapping the ra to its parent stack frame

vsf ftpdataio transfer file(). It requires mapping continuation point 3 from v1.2.2 (Fig-

ure 8, line 11) to continuation point 5 in v2.0.0 (Figure 9, line 19), including sup-

plying the new parameters curr offset() and num send() (Figure 9, lines 5-6; initial-

ized in the corresponding stack transformer as lines 16 and 18) to the new version

do file send sendfile(). Without this mapping an update would incorrectly resume

from the saved return address ra=3 in v2.0.0 (Figure 9, line 16), which would load

52

1 struct v s f t r a n s f e r r e t v s f f t p d a t a i o t r a n s f e r f i l e (
2 struct v s f s e s s i o n ∗ p ses s , int remote fd ,
3 int f i l e f d , int i s r e c v , int i s a s c i i)
4 {
5 f i l e s i z e t c u r r o f f s e t ;
6 f i l e s i z e t num send ;
7
8 // Cont inuat ion poin t 1
9 i f (! i s r e c v) {

10 i f (i s a s c i i | | p ses s−>d a t a u s e s s l) {
11 // Cont inuat ion poin t 2
12 return do f i l e s e nd rw l o op (p ses s , f i l e f d ,
13 i s a s c i i) ;
14 } else {
15 // Cont inuat ion poin t 3
16 c u r r o f f s e t = v s f s y s u t i l g e t f i l e o f f s e t (f i l e f d) ;
17 // Cont inuat ion poin t 4
18 num send = calc num send (f i l e f d , c u r r o f f s e t) ;
19 // Cont inuat ion poin t 5
20 return d o f i l e s e n d s e n d f i l e (p ses s , remote fd ,
21 f i l e f d , c u r r o f f s e t , num send) ;
22 }
23 } else {
24 // Cont inuat ion poin t 6
25 return d o f i l e r e c v (p ses s , f i l e f d , i s a s c i i) ;
26 }
27 }

Fig. 9. Continuation Points in vsFTPd v2.0.0.

vsf sysutil get file offset() on the stack, and the old state Tsf of callee stack frames of

do file send binary() would not be restored.

Figure 10 shows how the user declares the variable (source code in C) that expresses

the continuation mapping to update to vsFTPd v2.0.0. There are two mapping points

for vsf ftpdataio transfer file(): 3 maps to 5 (line 5), and 4 maps to 6 (line 6). Con-

tinuation points 1 and 2 use a default mapping: they map to their old values of 1

and 2, hence they do not need to be overridden by the user. Also the stack frame of

function do file send binary() is replaced with a stack frame for do file send sendfile()

(lines 9-10) and execution continues from the replaced function at an offset continua-

tion of -4 (lines 12-16), which indicates that, compared to do file send binary(), some

code from the beginning of do file send sendfile() was removed.

4.5 Multi-Threaded Updates

Updating a multi-threaded or multi-process application requires all threads to be

blocked. If some threads are executing while reconstruction is underway and global

variables are mapped, the possibility remains open for an executing thread to corrupt

global data, for example due to a type-safety violation.

UpStare adapts an algorithm that blocks all threads in heterogeneous checkpointing

for multi-threaded applications[96] to dynamic updates. The idea is to force all but

53

1 upstare mapping t mappings v200 [] = {
2 { ” v s f f t p d a t a i o t r a n s f e r f i l e ” ,
3 ” v s f f t p d a t a i o t r a n s f e r f i l e ” ,
4 2 , // 2 cont inuat ion poin t s are mapped
5 { { 3 , 5 } , // cont inuat ion poin t 3 maps to 5
6 { 4 , 6 } // cont inuat ion poin t 4 maps to 6
7 }
8 } ,
9 { ” do f i l e s e n d b i n a r y ” ,

10 ” d o f i l e s e n d s e n d f i l e ” ,
11 5 ,
12 { { 6 , 2 } ,
13 { 7 , 3 } ,
14 { 8 , 4 } ,
15 { 9 , 5 } ,
16 { 10 , 6 }
17 }
18 }
19 } ;

Fig. 10. Continuation Mapping (Part) to Update vsFTPd v1.2.2 to v2.0.0.

one thread to block when the application must update. The one thread that is not

blocked will be the coordinator of the update. It polls the status of the remaining

threads until it can tell for sure that all threads are blocked, as defined below.

When a thread reaches an update point and the application must update, it raises

a flag indicating that it is willing to cooperate on the update and then attempts to

acquire a coordination lock. The first thread to acquire the coordination lock is the

coordinator of the update. The coordinator can tell that some threads are blocked

if their cooperation flags are raised. But this does not cover all threads. Some

threads might be blocked waiting on an application lock owned by a thread that is

already willing to cooperate and that is blocked on the coordination lock. To that

end, the system needs to keep track of the blocking status of various threads. Calls

to pthread mutex lock() and pthread mutex unlock() are replaced with wrapper calls

to keep track of the blocking status of threads. When a thread attempts to acquire a

lock, it adds the lock to a WANT list. When the lock is acquired, the lock is removed

from the WANT list and placed on a HAVE list. When the thread releases the lock,

the lock is removed from the HAVE list.

The coordinator determines that a thread is really blocked if:

1. The thread is willing to update;

2. The thread is blocked waiting on a lock owned by another thread that is really

blocked.

The coordinator keeps on checking the status of the other threads until it can

determine that all other threads are really blocked, at which time the coordinator

54

initiates the actual update: the stack of each thread is unrolled and the threads

block; all datatypes are transformed; the stacks are reconstructed and the threads

block; and, the threads resume executing the updated version.

Since some threads may block waiting on a lock owned by another thread that is

blocked, these threads cannot reconstruct their stack because they have not encoun-

tered an update point. Extending all locks to be update points too allows updating

such threads.

The algorithm outlined above has been extended to support blocking threads that

use counting semaphores[96], but the current implementation does not yet integrate

that capability with the dynamic update system.

Multi-process updates. Support for multi-threaded updates is extended in

multi-process applications. UpStare keeps track of all processes created by an ap-

plication and coordinates an atomic update among all the threads of all processes

involved in the application.

To keep track of all processes in an application, fork() is replaced with a wrapper

call that maintains a hierarchy of children. This information is used by the parent

process, which acts as a central coordinator of the individual update steps, to apply an

atomic update among all children: it waits for all threads of all children to block; all

stack frames to be unrolled; transforms datatypes; reconstructs stacks; and, releases

all children after all their threads are ready to resume execution. wait() and waitpid()

are also intercepted to cleanup the children hierarchy.

4.6 Blocking System Calls

To enable the runtime to regain execution when an update is initiated, UpStare

transforms blocking I/O calls into non-blocking calls and segments write calls into

writes of smaller chunks.

Calls to sendfile(), which is used in vsFTPd for file transfer, are segmented into

256KB chunks. Segmentation for for send() is not yet implemented but it should

be straightforward to do so. read(), recv(), accept(), and select() calls are wrapped

to check if the file descriptor is set to blocking mode. If it is, the file descriptor is

converted to non-blocking mode, the operation is issued, and execution is voluntarily

blocked in a manner that allows unblocking: UpStare issues a select() that includes in

its read set the file descriptor of a pipe created by the runtime. If an update must be

applied, hence execution should unblock, UpStare writes to the pipe to force select()

to return and encounter an update point. A bottom handler executed after the update

point resets the file descriptor to blocking mode. To allow state transformation while

a blocking system call is issued without corrupting the data buffer of read() or recv(),

these calls are issued with a buffer allocated on the heap. When the operations

complete, the data are copied back to the original buffer. A possible optimization,

55

which has not been implemented yet, is to transform programs to allocate I/O data

buffers on the heap instead of the stack, to avoid copying data back to the buffer

when such operations complete.

A more general approach to handling any blocking system call, not just I/O calls,

is to always issue the call in a separate thread. This allows the runtime to remain in

control and initiate reconstruction even if the system call has not returned yet. The

original implementation of blocking I/O calls followed this approach but was not as

efficient as the self-pipe select() solution, due to the cost of pthread create().

Another approach to handling blocking system calls is to use worker threads. It

is possible to start a few threads that would be available (sleeping in an infinite

loop) when a blocking I/O call must be issued and have these threads issue the

call. The threads would retrieve through pointer indirection the function that would

issue the call. This approach would be a good option when instrumenting long-lived

applications that do not frequently fork() additional processes. However, it would

not be a good option for TCP servers that frequently fork() short-lived connection

handlers because it does not alleviate the cost of pthread create() to start the worker

threads.

Finally, one more approach is to use the Asynchronous I/O (AIO) operations de-

fined by the POSIX.1b standard. A practical limitation encountered implementing

this approach is that AIO support was not provided for the accept() call in the Linux

environment (Debian 4.0) used to develop UpStare. This support is provided in other

operating systems, such as zOS.

4.7 Conclusion

This dissertation provides a DSU system, called UpStare, that implements the whole-

program update mechanism. This mechanism is suitable for applying immediate

updates. UpStare uses stack reconstruction to map the state of threads and to ensure

updates are atomic. It also forces all executing threads to block and transforms

blocking system calls to non-blocking to provide bounded delay. The user can provide

a general mapping function to map the old application state to any desired state of

the new version of the application. This is not practical, so UpStare provides default

state mappings by automatically generating datatype and stack transformers and by

preserving execution continuation points. The ability to map execution continuation

points is unique in UpStare and it is necessary in updates that require a thread to

escape a long-lived loop or function. It is also necessary in updates that merge or

partition functions and loops. The default state mappings are effective in practice

and could be improved to further minimize user input.

56

UpStare does not yet integrate support for multi-threaded applications that use

counting semaphores, or support for mapping pointers, which were developed in pre-

vious work.

Chapter 5

RUNTIME SAFETY CHECKING

Chapter 4.2 described the implementation of stack reconstruction which guarantees

atomic updates under the whole-program update model. This chapter presents an

approach for providing runtime safety checks that can be useful to all updating mod-

els. Note that this approach does not rely on stack reconstruction and is architecture

(and operating system) independent. It could be incorporated in other DSU systems.

This approach is used to enforce transaction-safety in UpStare.

Runtime safety checks are enforced by consulting information about the application

call sequences (one per thread) and the call site for every call in these sequences. This

information is called the context-sensitive call stack information. This information is

available at any point during the execution and is maintained using a dynamic stack

tracing mechanism. This chapter describes how dynamic stack tracing can be used

to provide more accurate transaction safety and type-safety. Dynamic stack tracing

is used to provide more accurate transaction-safety in UpStare, but it is not used to

provide type-safety because UpStare already guarantees type safety under the whole

program update model.

It is important to note that unlike other approaches dynamic stack tracing can

be used to enforce type-safety and transaction safety more accurately. In fact, the

context-sensitive call stack has information about the origin of the function calls (it

contains the return address of call-sites) and this information is available only during

runtime. Existing work conservatively enforces type-safety and transaction-safety by

computing universally type-safe [38] and transactionally-safe [39] update points. This

computation needs to be conservative because it is carried out at compile-time and

must account for the multitude of contexts (call-sites) from which functions can be

called in an application.

5.1 Dynamic Stack Tracing

Dynamic stack tracing is an approach for capturing the state of the stack of a running

program to facilitate runtime safety checks. Programs are instrumented to efficiently

and dynamically maintain their stack state at a high-level (source-code) and offer this

information to the dynamic software updating runtime environment to enforce safety

58

checks before an update is applied. The captured state is architecture (and operating

system) independent.

The stack trace dynamically captures the names of functions that are active on the

stack. For each function that is active on the stack, the instrumentation also saves

the execution point from which the next stack frame was created when the callee

function was called. The combination of function names and their execution points

provides an accurate context-sensitive call stack trace. The execution points captured

are equivalent to the continuation points described in Chapter 4.4.3. Using this call

stack trace, safety checks such as type-safety and transaction-safety can be enforced

more accurately. Type-safety can be enforced if type information is precomputed

(statically) for every continuation point. Transaction-safety can be enforced if a user

forbids updates from being applied inside specific regions of code which are active on

the stack.

An alternative approach would be to extract a stack trace only when it is time

to enforce safety checks instead of continuously maintaining it at runtime. This is

possible at the lower-level (binary-code) by examining the processor stack pointer

(ESP) and identifying the frame pointers of each function [26, 33]. But this approach

is more difficult. It depends on the compiler ABI, the system architecture, and

requires developing a mapping of binary code to source code. This approach also fails

if a program is compiled without frame pointers or if it calls library functions that

have been compiled without frame pointers (e.g. several functions in GNU libc). For

these reasons UpStare chooses the approach of dynamically tracing the stack at the

source-code level.

Design Considerations. Since the runtime safety checks need to consider the

safety of multiple threads in an application, the dynamic stack tracing instrumen-

tation needs to be able to capture the stack state of multiple threads. This can be

challenging depending on the multi-threading support provided by the operating sys-

tem. There are two possibilities: (a) saving the state in a global variable shared by all

threads, and (b) saving the state locally in each thread. Under both possibilities, the

thread state should be saved efficiently. This means a stack tracing implementation

should not introduce locking among the threads when maintaining the trace.

Additionally, supporting stack tracing for multi-process applications needs to be

considered. The POSIX standard specifies that (a) when a process issues fork() the

spawned child process continues using the same memory of the parent process, and

(b) the child continues execution of only the thread that issued the fork(). These

two specifications imply that if the parent process has multiple threads executing,

thus multiple stack traces maintained, the child process needs to re-initalize (free

from memory or clean for future use) these traces (of no longer executing threads).

59

A dynamic stack tracing implementation should efficiently re-initialize stack traces

when children processes are spawned.

In conclusion, an ideal dynamic stack tracing implementation should not intro-

duce locking among the threads when maintaining the trace and it should efficiently

re-initialize stack traces when children processes are spawned. With these design

considerations in mind, the remainder of this section describes the possible options

for a dynamic stack tracing implementation.

5.1.1 Stack Tracing in a Global Variable

This section discusses a design that uses a global variable to save the stack traces

of all threads. This design is not a good option because using a global variable may

require locking to maintain the trace of multiple threads, depending on the threading

implementation of an operating system. UpStare does not implement this design.

Saving a thread state in a global variable needs an array of saving per-thread state

and relies on the thread id for indexing in such an array. But the numeric range of

the thread id reported by an operating system may vary depending on the threading

implementation of the system. For example thread ids may be too large (e.g. long

values) for indexing in an array. This would make it impossible to allocate enough

memory for maintaining such an array.

Consider a threading implementation of the POSIX Threads API, which is the

standard for portable operating systems. The maximum number of threads that can

be started by a process (PTHREAD THREADS MAX) is often set to 16384. This

means it should be possible to allocate a small array to maintain such a number of

threads. However the ids assigned to each thread by the POSIX Threads implemen-

tation in an operating system may not lie in the range of 1-16384. For example, Linux

reports thread ids that are unsigned long values (e.g. 3085178560). These values can-

not be used to index in an array that keeps per-thread information. Solaris reports

thread ids that begin from 1 but the thread ids are not recycled to start from 1 again

when PTHREAD THREADS MAX is reached, hence these values cannot be used to

index in an array that keeps per-thread information either.

It is possible to implement a hash-table for multi-level indexing, but this requires

locking for accessing the hash table, which would fail to scale when the number of

threads increases. Another possible solution is to change the threading implementa-

tion to recycle thread ids, similar to recycling process ids in operating system kernels.

But this would make the stack tracing approach dependent on a threading imple-

mentation that is capable of thread id recycling, which may not be available in all

operating systems.

The POSIX Threads API addresses this problem generally by allowing definitions

of thread-local data, as explained in the next section.

60

5.1.2 Stack Tracing Using the POSIX Threads API

An alternative design relies on the POSIX Threads API to implement stack tracing.

This design meets the ideal goal of not introducing locking among the threads when

maintaining the trace. However, re-initializing stack traces when children processes

are spawned depends on the number of threads that were executing on the parent

process. UpStare implements this design and evaluates its performance.

As shown in the previous section, one cannot assume that the implementation of

the POSIX Threads API will report thread ids that fall in a specified range and

that are recycled. The POSIX Threads API solution to this problem is to allow

defining thread-local data using keys. Keys are common to all threads, but the value

associated with a key is different between threads. To support stack tracing using

keys, first a key is created with pthread key create(). For each thread created, a

stack trace is allocated on the heap (with malloc()) and it is associated to the thread

with pthread setspecific(). During runtime, the stack trace can be retrieved using

pthread getspecific().

The stack trace is maintained as a fixed-size array of 256 elements and this is enough

room to manage stack traces of large applications. For example, the maximum stack

depth of PostgreSQL v7.4.16 is only 35 frames. This array is treated as a stack. When

a new function is entered an entry is pushed in this stack. Before a function returns

the last trace entry is popped from the stack (by decrementing a stack counter). The

stack trace saves for each function that is active on the stack the execution point

that was visited in the function. This captures accurately the calling context for all

active stack frames and the execution point of the stack frame in which the Program

Counter currently executes.

Figure 11 shows how programs are transformed for dynamic stack tracing using the

POSIX Threads API. In the main entry-point function a stack trace variable pointer

*trace is instantiated (line 15). Stack tracing for the main thread is initialized (line

17) by creating a key, allocating the trace on the heap, and associating it with the

key. The stack trace pointer is retrieved (line 18) and used to maintain the trace. A

trace record is pushed on the stack (line 19) and records that execution is currently

in main() (line 20). The trace saves the execution point in main() (line 21) before

functionA() is called (line 22). When functionA() is entered, a stack trace pointer is

retrieved again (line 6). A new trace record is pushed on the stack (line 7) which

records the program is currently executing in functionA() (line 8). Before this function

returns to main(), its trace record is popped from the stack trace (line 10). The trace

record of main() is also popped from the stack trace (line 23) before the stack trace

is freed from memory (line 24) and main() exits.

This approach does not require locking at runtime to maintain the stack trace. A

limitation of this approach is that if a program issues a fork() call, the child needs to

61

1 void funct ionA (void)
2 {
3 int a ;
4
5
6
7
8
9 a = 5 ;

10
11 }
12
13 void main (void)
14 {
15
16
17
18
19
20
21
22 funct ionA () ;
23
24
25 }

1 void funct ionA ()
2 {
3 int a ;
4 t r a c e t ∗ t r a c e ;
5
6 t r a c e = p t h r e a d g e t s p e c i f i c (t r a c e key) ;
7 trace−>counter++;
8 trace−>funct ion names [trace−>counter] = ” funct ionA” ;
9 a = 5 ;

10 trace−>counter −−;
11 }
12
13 void main (void)
14 {
15 t r a c e t ∗ t r a c e ;
16
17 t r a c e i n i t (”main”) ;
18 t r a c e = p t h r e a d g e t s p e c i f i c (t r a c e key) ;
19 trace−>counter++;
20 trace−>funct ion names [trace−>counter] = ”main” ;
21 trace−>exe cu t i on po i n t s [trace−>counter] = 1 ;
22 funct ionA () ;
23 trace−>counter −−;
24 t r a c e e x i t () ;
25 }

(a) Non-Instrumented (b) Instrumented

Fig. 11. Dynamic Stack Tracing Using the POSIX Threads API.

free from the heap any stack traces that had been maintained by the parent. Failure

to free this memory could result in the child process, and any sub-children it may

spawn, to run out of memory. Freeing stack traces increases the latency of spawning

children processes and depends on the number of threads that were executing in the

parent. To free the memory of stack traces, fork() is replaced with a wrapper call

that cleans up this memory.

5.1.3 Stack Tracing Through Parameter Passing

An alternative design is to pass the whole stack trace as a parameter to every function

when it is called. This design meets both goals of an ideal dynamic stack tracking

implementation: it does not introduce locking among the threads when maintaining

the trace and it efficiently re-initializes stack traces of child processes. UpStare imple-

ments this design and compares its performance to the performance of a stack tracing

implementation using the POSIX Threads API. The details of the design follow.

This design saves the dynamic stack trace of each thread locally but without relying

on the POSIX Threads API. To maintain the stack trace locally per thread, all thread

entry-point functions (like the main() function) are automatically identified and for

each one a local variable is declared that is used for maintaining the trace. The

variable is passed as a parameter to all callees of the thread entry-point function.

62

1 void funct ionA (void)
2 {
3 int a ;
4
5
6
7 a = 5 ;
8
9 }

10
11 void main (void)
12 {
13
14
15
16
17
18
19 funct ionA () ;
20
21 }

1 void funct ionA (t r a c e t ∗ t r a c e)
2 {
3 int a ;
4
5 trace−>counter++;
6 trace−>funct ion names [trace−>counter] = ” funct ionA” ;
7 a = 5 ;
8 trace−>counter −−;
9 }

10
11 void main (void)
12 {
13 t r a c e t t r a c e ;
14
15 t r a c e i n i t (&trace var , ”main”) ;
16 t r a c e . counter++;
17 t r a c e . funct ion names [t r a c e . counter] = ”main” ;
18 t r a c e . ex e cu t i on po i n t s [t r a c e . counter] = 1 ;
19 funct ionA(&tr ac e) ;
20 t r a c e . counter −−;
21 }

(a) Non-Instrumented (b) Instrumented

Fig. 12. Dynamic Stack Tracing Through Parameter Passing.

This allows the callees to maintain the stack trace in this variable when they are

on the stack. It eliminates the need to call pthread getspecific() in every function to

retrieve a pointer to the stack trace.

Figure 12 shows how programs are transformed for dynamic stack tracing. In the

main entry-point function a stack trace variable trace is instantiated (line 13) and

initialized (line 15) for the main thread. A trace record is pushed on the stack (line

16) and records that execution is currently in main() (line 17). The trace saves the

execution point in main() (line 18) before functionA() is called with the stack trace as

a parameter (line 19). When functionA() is entered, a new trace record is pushed on

the stack (line 5) which records that the program is currently executing in functionA()

(line 6). Before this function returns to main(), its trace record is popped from the

stack trace (line 8). The trace record of main() is also popped from the stack trace

(line 20) before main() exits.

Similar to the approach of stack tracing using the POSIX Threads API, this ap-

proach also does not require locking at runtime to maintain the stack trace. An

advantage of this approach is that when children processes are spawned no additional

effort is required to free the memory of stack traces. That’s because stack traces are

instantiated on the stack, instead of the heap. When a child process runs, the stack

frames of any threads that were executing in the parent simply remain unused.

63

5.1.4 Stack Tracing and Stack Reconstruction

Three approaches to implement dynamic stack tracing were outlined. Regardless

of the approach followed, stack reconstruction can enable stack tracing only when

an update is desired. This means that during normal execution of the application

(when an update is not desired) stack tracing can be disabled, and there will be

no overhead due to stack tracing during this period. The overhead of stack tracing

will be incurred temporarily: from the time an update is requested to the time it is

applied. The current UpStare prototype does not yet implement this feature.

When an update is requested, the application can be updated to a version that

contains a dynamic stack tracing implementation. Enabling stack tracing will be the

only difference in the application in this stage of the update, and the stack traces

of all threads can be initialized to correspond to the current state of each thread

stack. This is straightforward because stack unrolling saves the continuation points

(equivalent to the execution points needed by stack tracing) of each stack frame.

Combining the names of functions with the continuation points saved provides the

stack trace of each thread.

After the application has been updated to maintain dynamic stack traces, the ap-

plication resumes execution. At this stage, the runtime safety checking constraints

provided by the user (such as transaction-safety constraints) can be enforced. The

application pauses each of its threads at update points that meet these safety con-

straints and then initiates stack reconstruction to update to the new version. The

new version no longer contains instrumentation for dynamic stack tracing, and the

application resumes execution without the overhead of stack tracing.

5.2 Type-Safety

Dynamic type-safety checking is developed using statically computed type information

and the context-sensitive call stack maintained through dynamic stack tracing. This

section presents a proof-of-concept implementation that shows type-safety can be

enforced dynamically.

The static computation of type information is currently implemented at the func-

tion granularity. The implementation of static computation can be extended to the

execution point granularity for more accurate type-safety checking, but in general an

absolutely accurate safety checking is undecidable.

For each function, the computation identifies the types of all local variables, the

types of formal parameters, the type of the return value, the types of all variables

set as l-values (these could include global variables) and any types on which these

types depend on (e.g. as fields in a struct). The computation produces in a variable

a listing of all this type information for each function. This is conservative because

64

it identifies types that may be used anywhere within the function, even if an update

may be applied at an execution point from which some types may no longer be used

until the end of the function.

When an update is requested and an update point is encountered the runtime

environment checks for type-safety. The runtime environment is given the execution

point at which an update point is encountered and the context-sensitive call stack

trace. It is also supplied with a list of types, computed by the patch-generator, that

need to be updated. If one of the types that will be updated is in the list of types

that are used by a function that is already on the stack, the update is forbidden since

it would violate type-safety.

5.3 Transaction-Safety

The context-sensitive call stack maintained through dynamic stack tracing is also used

to develop dynamic transaction-safety checking. The user supplies transaction-safety

constraints to the system and the runtime environment ensures these constraints are

satisfied before an update is applied.

The safety constraints express for each function of each thread which regions of

code should not be active on the stack when an update is applied. They can also

express the opposite: which regions of code should be active on the stack during the

update. The regions of code are defined at execution point granularity. All of the

constraints (among all threads) must be satisfied before an update is applied.

Note that the transaction-safety constraints are supplied to the updating system

dynamically when an update is requested. They do not need to be defined before

the application begins execution. If a user realizes that the constraints originally

defined are incorrect or too strong, leaving no possibility of applying an update, the

constraints can be updated while the application is running. This is not possible

using an approach that enforces transaction-safety constraints at compile-time.

Stopping a thread at an execution point that does not violate transaction-safety

constraints does not guarantee that other threads will also stop at execution points

that do not violate transaction-safety constraints. Addressing this problem is beyond

the scope of this dissertation.

5.4 Conclusion

UpStare provides runtime safety checking using a new approach of dynamic stack trac-

ing. This approach does not rely on stack reconstruction and could be incorporated

in existing DSU systems. Dynamic stack tracing dynamically maintains a context-

sensitive call stack for each thread of the application. This information can be used to

more accurately, instead of conservatively, enforce type-safety and transaction-safety.

65

Another benefit of dynamic stack tracing is that safety constraints can be dynamically

modified during application execution. Stack traces combine the names of functions

active on the stack with their execution points.

An ideal dynamic stack tracing design should not introduce locking among the

threads when maintaining the stack trace and it should efficiently re-initialize traces

when children processes are spawned. Two designs are presented that apply source-

to-source transformations in applications to dynamically maintain stack traces. The

first approach relies on the POSIX Threads API and the second passes a pointer to the

stack trace variable as a parameter between function calls. Dynamic stack tracing

incurs some overhead and, as will be shown in Chapter 6, relying on the POSIX

Threads API performs better than parameter passing in the single-threaded, multi-

process applications that are examined. When combined with stack reconstruction,

the overhead of stack tracing can be incurred temporarily, from the time an update

is requested to the time the update is applied.

Chapter 6

EVALUATION

This chapter describes the evaluation of UpStare on three applications. The data-

intensive KissFFT, the vsFTPd server, and the PostgreSQL database management

system. It demonstrates that stack reconstruction is necessary to apply atomic

updates and that converting blocking calls to non-blocking is necessary to provide

bounded delay. A limitation of the evaluation is that it does not study applications

that are multi-threaded. However, it demonstrates updates of applications that are

multi-process, and support for multi-process updates is an extension of support for

multi-threaded updates. It gives a detailed analysis of the sources of overhead of the

instrumentation, such as runtime overhead, memory footprint, and network overhead.

6.1 KissFFT

The KissFFT 1 Fast Fourier Transform library is a small (1,936 lines of code) data-

intensive application. This application is studied because it performs no disk or

network I/O and the aim is to identify in detail the sources of overhead of the instru-

mentation. The performance of UpStare is also compared with the performance of

Ginseng [32] because Ginseng has been successful in applying DSU with a combination

of function-pointer indirection, data-access indirection, and logical-stage extraction.

KissFFT source code instrumented with Ginseng was made available to us. This

application is not updated, but it is compiled to be updateable. The comparison

examines the execution time, the memory footprint, and the instrumentation size of

an updateable KissFFT instrumented with UpStare against an updateable KissFFT

instrumented with Ginseng.

6.1.1 Execution Time

This application was used to get a better understanding of the sources of overhead

introduced by the instrumentation. Various various instrumented versions of the

application were prepared that selectively and progressively added UpStare instru-

mentations to isolate the overhead introduced by each stage of the instrumentation.

Performance was measured using various versions of compilers on various processors.

1http://sourceforge.net/projects/kissfft

67

This application was compiled and ran in the following configurations (the command-

line arguments supplied are shown in parenthesis):

1. Using the original compiler.

2. Using CIL.

3. When only wrapper functions to save/restore stack frames are produced (–no-

stack-reconstruction –no-function-call-indirection).

From this point on, additional instrumentation is progressively enabled and the

cumulative impact of each instrumentation stage is measured.

4. When functions are called through pointer indirection(–no-stack-

reconstruction).

5. When if-statements without a body (the body contains four “no-operation”

– nop – assembly instructions) are inserted for (a) update points (Figure 4),

(b) the switch-statement prologue (Figure 3b), or (c) upwards stack unrolling

(Figure 2b); here the aim is to measure the overhead of branch checks when

the must update and must reconstruct() flags are not raised (–simulate-stack-

reconstruction).

6. After adding the body of these if-statements. This is the full UpStare instru-

mentation.

7. Using Ginseng to insert only update points (–doupdate –update-

points=returnonly).

8. As made available to us, already instrumented with Ginseng. This source code

had been manually modified to optimize away some redundant uses of versioned

pointer indirection. This optimization could be implemented automatically in

Ginseng but the analysis for this optimization had not been implemented yet.

KissFFT v1.2.0 was compiled (at -O3) using float datatypes to be dynamically

updateable and was used to perform 100,000 iterations on 20,000 points. Figure 13

shows the impact of the presence of reconstruction-aware code in the program and

compares this instrumentation with Ginseng. To compare the results the evaluation

identifies the best compiler to use with a non-instrumented KissFFT and the best

compiler to use under instrumentation. Given an non-instrumented KissFFT, gcc 4.1

(GNU C Compiler) is the best compiler and given an instrumented KissFFT the best

compilers are icc 10.1 (Intel C Compiler) for Ginseng and gcc 3.4 for UpStare, all on

a Pentium M. Under this comparison, the best performing Ginseng reports overhead

68

of 149.8% (87.1% for UpStare) and the best performing UpStare reports overhead

of 38.2% (179.3% for Ginseng). The overhead of Ginseng stems from accessing data

through a versioned pointer indirection instead of accessing them directly. In com-

parison, we speculate that the overhead of UpStare is rooted at missed optimization

opportunities due to the stack-reconstruction instrumentation.

69

 0

 10

 20

 30

 40

 50

 60

 70

S
ec

o
n
d
s

KissFFT of 100000 iterations on 2000 points

cc
CIL

UpStare - no-if-stmts-no-indirection
UpStare - no-if-stmts-indirection

UpStare - if-stmts-no-body
UpStare

Ginseng - update-points-only
Ginseng - provided

gcc 3.4
8KB L1

256KB L2
Pentium 4

1.6Ghz

gcc 4.1 icc 10.1 gcc 3.4
8KB L1

256KB L2
Xeon

1.5Ghz

gcc 4.1 icc 10.1 gcc 3.4
32KB L1
1MB L2

Pentium M
1.3Ghz

gcc 4.1 icc 8.0 icc 9.1 icc 10.1

Fig. 13. KissFFT: Impact of Reconstruction Code on Running Time.

70

CIL. CIL parses a program, builds an internal representation that can be used for

analysis, and outputs the program according to this internal representation. This

output does not match precisely the original program. For example, temporary vari-

ables are introduced as the return value of each function call, and these variables can

take space on the stack if they are not optimized away by a compiler. Generally, CIL

doesn’t alter the performance of the application. But it reported up to 4.2% overhead

(Pentium 4: icc 10.1) and up to 1.0% improvement (Pentium M: icc 10.1).

Wrapper save/restore functions. Wrapper functions that save and restore

stack frames are produced outside the .text segment. Producing these functions in an

application should introduce zero overhead because the functions would not pollute

the instruction cache. However, compared to the overhead of CIL, producing these

functions reported 11.8% overhead with gcc 4.1 and 11.0% improvement with gcc 3.4,

on a Pentium M. This high variability in the gcc results suggests a problem with

gcc. This is in contrast to the Intel compilers which report no overhead under all

processors, as was expected by this type of instrumentation.

Function indirection. Functions called through pointer indirection should incur

very little, and constant, overhead. They report overhead up to 3.0% on a Pentium

M (icc 10.1), 1.2% on a Xeon (gcc 4.1), and 10.3% on a Pentium 4 (gcc 3.4). Function

indirection is also used by Ginseng and other DSU systems and it is expected Ginseng

has similar overhead. Also note that, as described in Chapter 4.2, function indirection

is not needed by UpStare. Function indirection is a feature the current UpStare

prototype provides to allow implementing updating models other than the whole-

program update model, hence this overhead could be eliminated entirely.

If-statements without a body. In UpStare, if-statements are added for (a)

update points, (b) reconstructing, and (c) unrolling. In comparison, Ginseng instru-

mentation adds only update points, which are implemented as function calls. Adding

if-statements without a body (the body contains four “no-operation” – nop – assem-

bly instructions) should not have significant impact on the function body size or the

execution time. On a Pentium M, inserting if-statements adds an overhead of 7.2%

for icc 10.1, 7.2% for gcc 4.1 and 11.3% for gcc 3.4. This suggests branch prediction

can be a significant factor in final performance. Still, update points in Ginseng and

if-statements in UpStare incur comparable overhead.

If-statements with a body. This is a version of the application fully instru-

mented with UpStare, which increases the size of functions. In comparison to the

total overhead of if-statements without a body (Pentium M: 18.0% for gcc 4.1; 9.2%

for icc 10.1), an increased function image size adds an overhead of 23.0% and 57.4%

respectively, and is responsible for most of the system overhead.

71

6.1.2 Sources of Overhead

Three possible sources of overhead are suspected in UpStare. First, the increase in

function size due to instrumentation could lead to ITLB misses. Second, adding if-

statements for the update points and the big switch-statement could lead to branch

mispredictions. Third, the instrumentation for saving and restoring the stack state

could lead to missed optimization opportunities, especially in computationally-bound

loops. Each of these possible sources of overhead were investigated further to better

understand their impact in the final overhead, as described next.

ITLB misses and branch mispredictions. To study the possibility of ITLB

misses, OProfile2 was used to collect processor performance statistics on the Pentium

4 with gcc 4.1 (overhead 31.3%). Performance statistics were compared between in-

serting if-statements without a body and inserting if-statements with a body (full

UpStare instrumentation). Inserting if-statements with a body observes a 15% in-

crease in the number of ITLB translations and an 11% increase in the number of

instruction fetch requests from the branch prediction unit. Other events like ITLB

misses, retired mispredicted branches and page walks showed no significant devia-

tion. Although higher numbers of ITLB translations and instruction fetch requests

are observed, these numbers are not sufficient to justify the 31.3% overhead on this

processor, especially since there is no deviation in the number of ITLB misses which

are more expensive. This experiment concludes that ITLB misses are not a significant

factor in the performance overhead of the instrumentation of UpStare.

Two additional experiments were executed comparing the performance between in-

serting if-statements without a body and inserting if-statements with a longer body

which still does not contain the UpStare instrumentation. If the increase of the func-

tion size is a significant factor leading to ITLB misses, then systematically increasing

the function size should yield higher overhead. In the first experiment, if-statements

were inserted that contained up to 2000 nop instructions, instead of just 4 nop in-

structions, but no change in the overhead was observed. In the second experiment,

if-statements were inserted containing large amounts of code performing floating point

arithmetic, but this still had no effect in the overhead. These experiments conclude

that an increase in the function size does not affect performance.

Missed optimization opportunities. To study the possibility that the instru-

mentation forces compiler optimizations to be more conservative, OProfile was used

to identify the most frequently used function in KissFFT. This function, kf bfly4(), ex-

ecutes a computational loop that contains 16 computation statements (add, subtract,

multiply) performed against an array. We speculate that since KissFFT performs ma-

trix computations, and has a relatively long loop body, it presents more optimization

2http://oprofile.sourceforge.net

72

opportunities. Binary executables were produced when if-statements without a body

were inserted, and using the full UpStare instrumentation. The executables were dis-

assembled, and the assembly code produced for kf bfly4() was compared between these

two versions. The body of the loop was observed to use different assembly instruc-

tions between these two versions, which indicates the optimization of the compiler

was affected by the full UpStare instrumentation.

Two experiments were executed on a Pentium M with gcc 4.1 investigating the

possibility that the instrumentation that saves and restores stack frames could be

affecting the compiler optimization. The first experiment executed the full UpStare

instrumentation minus the calls to the functions that save stack frames in an up-

date point. Compared to inserting if-statements without a body this instrumentation

reports overhead of 13.7%. The second experiment executed the full UpStare instru-

mentation minus the calls to the functions that restore stack frames in the big switch-

statement. Compared to inserting if-statements without a body this instrumentation

reports overhead of 21.2%. These two experiments indicate that the majority of

the overhead stems from the addition of the code that saves and restores the stack

frames. We speculate that instrumentation by UpStare introduces high overhead in

applications containing relatively long loop bodies that present more optimization op-

portunities because the instrumentation changes the control flow so that the compiler

can no longer assume it is safe to take advantage of those optimization opportunities:

• When restoring stack frames, the compiler needs to be more conservative be-

cause the altered control flow allows for the possibility that data can be written-

to externally (when a user requests an update). We believe a compiler could

properly handle this case by producing code that checks at runtime this control

flow dependency (the may reconstruct and must update flags of UpStare).

• Saving stack frames should not conflict with the optimization. However the

implementation of saving stack frames was implemented generally to supply to

the runtime environment a pointer to the stack frame. We speculate that the

compiler needs to be conservative because it cannot guarantee that the pointer

contents will not be written-to by the runtime environment which is statically

linked as a library. To handle this case, the function calls that save stack frames

could be annotated to indicate that the contents of the stack frame pointer are

not written-to (e.g. icc supports such annotations; also the flag -fargument-

noalias-global).

Another experiment instrumented the Bubblesort application which implements

two nested loops in very little code. The computation in the loops accesses float

73

numbers from an array and swaps two elements (1 computation statement, in a rela-

tively short loop body) and we speculate that there is little optimization opportunity

in this application. The overhead of a Bubblesort (compiled at -O3) instrumented

with if-statements sorting 100,000 randomly generated numbers was compared to a

Bubblesort containing the full UpStare instrumentation. On a 1.6Ghz Pentium with

gcc 4.1, the full instrumentation reported overhead as low as 0.9%. This indicates

that for an application that has little opportunity for optimization UpStare does not

introduce significant overhead.

6.1.3 Memory Footprint

Similar to the evaluation of execution time, the memory footprint of this application

was also measured at the various stages of the instrumentation. The unit of measure

was the resident set size, which is the non-swapped physical memory the application

has used. Studying the memory footprint is different from studying the increase in

the size of the application executable file due to instrumentation. This is because not

every component of the instrumentation added to the application will be used during

normal execution mode of the application. Some instrumentation is used only when

the application is updated.

Figure 14 reports the impact of instrumentation on the memory footprint. CIL does

not increase the resident set size. Wrapper code that saves/restores stack frames is

responsible for most of the memory increase, up to 236KB (48.7%) using gcc 4.1

on a Pentium M. If-statements marginally increase memory by 4-8KB (0.9-1.7%).

The best performing UpStare in respect to running time (Pentium M: gcc 3.4), in-

creased memory by a total of 260KB (53.7%), while Ginseng (Pentium M: icc 10.1)

increased memory by 76KB (13.3%). Ginseng increases memory by type wrapping

struct datatypes, while UpStare adds updateable code inside functions and wrapper

functions to save/restore stack frames.

6.1.4 Instrumentation Size

To study the increase of the function size due to instrumentation, the size of an up-

dateable KissFFT executable was measured at the various stages of instrumentation.

Figure 15 reports the progressive increase of the .text segment as a result of the

instrumented code. As expected CIL generally does not increase the program code

size. Wrapper code that saves/restores stack frames also does not affect the program

code size because this code is stored outside the .text segment. However, an increase

in the code size is observed and it is attributed to the functions provided by the

runtime environment. These functions are listed first in the .text segment and do not

affect instruction caching, as has been confirmed in Figure 13. This code increase

74

 0

 500

 1000

 1500

 2000

 2500

K
B

KissFFT of 100000 iterations on 2000 points

cc
CIL

UpStare - no-if-stmts-no-indirection
UpStare - no-if-stmts-indirection

UpStare - if-stmts-no-body
UpStare

Ginseng - update-points-only
Ginseng - provided

gcc 4.1
8KB L1

256KB L2
Xeon

1.5Ghz

icc 10.1 gcc 4.1
32KB L1
1MB L2

Pentium M
1.3Ghz

icc 8.0 icc 9.1 icc 10.1

Fig. 14. KissFFT: Impact of Reconstruction Code on Memory Footprint.

is in the range of 52-57KB (depending on the compiler), which is the size of the

runtime environment. Since this code does not affect the program execution time,

the description of performance that follows provides a percentage of the code size

difference compared to the code size produced by CIL.

Calling functions through pointer indirection often decreases the program code (up

to -3,296 bytes with gcc 3.4; 36% compared to CIL). Adding if-statements without

a body (the body still contains four nop instructions) increases the program code

between 1,808 bytes (with icc 10.1; 8.3% compared to CIL) and 4,176 bytes (with

gcc 4.1; 60.3% compared to CIL). Finally, adding the body of these if-statements is

responsible for most of the code size increase. It increases the code between 8,576

bytes (with icc 9.1; 55.5% compared to CIL) and 20,672 bytes (with gcc 4.1; 225.8%

compared to CIL). For the best performing configuration of UpStare with KissFFT

(gcc 3.4 on a Pentium M with overhead of 38.2%) the program code increase due to

the body of if-statement is 21,280 bytes (307.7% compared to CIL). It is interesting

to note that Ginseng also adds considerable instrumentation in .text. For example,

75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

K
B

KissFFT of 100000 iterations on 2000 points

cc
CIL

UpStare - no-if-stmts-no-indirection
UpStare - no-if-stmts-indirection

UpStare - if-stmts-no-body
UpStare

Ginseng - update-points-only
Ginseng - provided

gcc 3.4
32KB L1
1MB L2

Pentium M
1.3Ghz

gcc 4.1 icc 8.0 icc 9.1 icc 10.1

Fig. 15. KissFFT: Impact of Reconstruction Code on Function Size (.text).

the best performing configuration of Ginseng (icc 10.1 on a Pentium M with overhead

of 87.1%) increases the program code by 57.1%.

6.2 The Very Secure FTP Daemon

The Very Secure FTP Daemon, vsFTPd3, is a fast, secure, widely used FTP server.

This application is studied because it is a medium-sized (∼12,000 lines of code), real-

world, multi-process, server application. The aim is to update all of the versions of this

application semi-automatically. As explained in Chapter 2, automatically producing

semantically safe updates is a difficult problem, hence some state mappings may

need to be produced manually. Given the size of this application it should be able to

override some of the automatically-generated state mappings with modest effort. The

next sections study the source code evolution of vsFTPd, describe the experience of

updating this application, and present performance results.

3http://vsftpd.beasts.org

76

6.2.1 Source Code Evolution

The source code evolution of vsFTPd is studied to gain a better understanding of

the nature of the dynamic updates that will be required. vsFTPd evolved over 5.5

years (13 releases) from v1.1.0 (July 2002) to v2.0.6 (February 2008). The study

identifies additions, deletions, and updates of all datatypes, variables, and functions.

However, the study does not attempt to discover function renamings: functions that

are deleted in the new version but added with a different name, same body, and same

formal and local parameters. That’s because it is desirable to ensure representation

consistency: that the application in memory is updated to match the source code

of the new version. Hence, UpStare follows a policy of updating functions that are

modified and adding new functions, and this subsumes functions which are renamed.

Table III summarizes the results. The results differ from the results already re-

ported in [120]. The difference is that the table shows only datatypes defined by

the application (collected without passing the –keepunused argument to CIL), rather

than showing unused datatypes imported through system header files. Datatypes

are more often added (15 datatypes total were added over all versions) and modified

(12 total), rather than deleted (2 total). Variables are frequently added (90 total),

sometimes modified (24 total) and rarely deleted (9 total). Functions are updated

very often (317 total), new functions are often added (108 total) and they are less

likely to be deleted (23 total).

Also note that a large collection of functions and variables are added in major

revisions of the program, such as from v1.1.3 to v1.2.0 and from v1.2.2 to v2.0.0.

For example, 35 variables were added in v1.2.0 and 16 variables were added in v2.0.0.

These account for 51 variable additions out of 75 total (56.7%). Similarly, 39 functions

were added in v1.2.0 and 35 functions were added in v2.0.0, and they account for 74

function additions out of 108 total (68.5%).

77

Ver. Date LoC4 Types Variables Functions

Tot. Same Add. Del. Upd. Tot. Same Add. Del. Upd. Tot. Same Add. Del. Upd.

1.1.0 2002-07-31 8,389 105 - - - - 158 - - - - 401 - - - -
1.1.1 2002-10-07 8,468 105 105 0 0 0 161 156 3 0 2 399 383 0 2 16
1.1.2 2002-10-16 8,731 108 103 3 0 2 165 159 4 0 2 410 391 11 0 8
1.1.3 2002-11-09 8,839 108 107 0 0 1 167 164 2 0 1 412 402 2 0 8

1.2.0 2003-05-29 10,011 114 104 8 2 2 201 159 35 1 7 444 341 39 7 64
1.2.1 2003-11-13 10,506 114 112 0 0 2 205 196 7 3 2 449 410 6 1 33
1.2.2 2004-04-26 10,547 114 114 0 0 0 204 202 1 2 1 450 439 1 0 10

2.0.0 2004-07-01 11,527 116 112 2 0 2 218 200 16 2 2 476 384 35 9 57
2.0.1 2004-07-02 11,543 116 116 0 0 0 219 218 1 0 0 476 469 0 0 7
2.0.2 2005-03-03 11,612 117 116 1 0 0 219 219 0 0 0 476 452 1 1 23
2.0.3 2005-03-19 11,743 117 117 0 0 0 226 216 8 1 2 479 444 5 2 30
2.0.4 2006-01-09 11,857 118 117 1 0 0 229 225 3 0 1 482 464 4 1 14
2.0.5 2006-07-03 11,923 118 117 0 0 1 234 228 5 0 1 482 455 0 0 27
2.0.6 2008-02-13 12,202 118 116 0 0 2 239 231 5 0 3 486 462 4 0 20

TABLE III
vsFTPd: Source Code Evolution.

4Generated using David A. Wheeler’s ’SLOCCount’.

78

6.2.2 Experience

A total of 13 updates to vsFTPd were semi-automatically prepared and applied.

All updates were applied without modifying the original source code of vsFTPd.

The goal was demonstrating that updates could be applied systematically in this

application. Another goal was determining if vsFTPd required updates of functions

on the stack. Updates were applied under two use cases which are typical for this

type of application. The two use cases examined are:

• Idle client. A client connected to the server, authenticated correctly, and was

waiting idle for user input on the command line. An update was applied.

In this use case the server is blocked indefinitely on a recv() call waiting for

client input through the network.

• File transfer. A client connected to the server, authenticated correctly, and

requested to retrieve a large file. The file begun being transmitted to the client

but had not finished transmission. An update was applied.

In this use case the server is blocked on a sendfile() call. Even though the call

offers bounded delay, there is no guarantee as to when the transmission will

finish.

Dynamic update patches were prepared automatically using the patch generator

and some of them were manually customized. The update patches required a total of

11 user-defined continuation mappings for the two use cases examined. This means

that updates were manually verified to be semantically correct from only two update

points (there are a total of 613 update points in v2.0.5). Additional mappings and

manual customizations will be needed to update from other update points.

The customizations involved some manual initialization of new variables and struct

fields in the automatically-generated datatype transformers. This initialization could

have been automated with additional engineering effort in the patch generator. For

example, added variables that were initialized to a default value could also be auto-

matically initialized by the datatype transformers. The same applies for preserving

the temporary variables produced by CIL, which are used to hold the return values

of function calls and may differ in their enumeration. For example, tmp 6 in the

new version may correspond to tmp 5 in the old version.

The customizations also involved more complicated state transformations exe-

cuted by the automatically-generated stack transformers. These customizations

cannot be automated without semantic analysis, and semantic analysis is not ad-

dressed in this dissertation. For example, the update from v1.1.1 to v1.1.2 changes

vsf standalone main() to allocate a hash table entry for every incoming connection

79

and maintain data about the connection in callees of this function. The stack trans-

former of vsf standalone main() had to be customized to allocate this entry in order

for the new versions of callee functions to work properly. Such manual, complex state

transformations had to be defined in a total of 4 updates. From v1.1.1 to v1.1.2 (just

described), from v1.1.3 to v1.2.0 (to install additional signal handlers), from v1.2.1 to

v1.2.2 (to dynamically allocate memory for storing a client’s originating IP address),

and from v2.0.3 to v2.0.4 (to DNS resolve the client’s IP address and store it in a

local variable).

These manual customizations indicate that an immediate update needs to iden-

tify code that would have been executed by the new version had the application been

started with the new version from the beginning. The state that would have been pre-

pared by such code needs to be properly initialized before the new version continues.

This outlines the need for analysis that guarantees semantic safety.

For the two use cases examined, a total of 22 lines of source code were written

that required complex transformations that need semantic analysis to automate. 300

lines of source code were written that could have been automatically produced by the

patch-generator with additional engineering effort, which included 35 lines of code

for preserving temporary variables. All this source code was included in the map-

ping files that overrode the patch-generator defaults. These mapping files contained

additional source code to enable the patch to compile and completely transfer the

state (including the remaining portions of automatically-generated stack transform-

ers, datatype-transformers, and datatype definitions), and consumed a total of 3,354

lines of code. After taking these mapping files into consideration, the patch-generator

automatically produced a total of 209,845 lines of source code, which included state

transformers, the new versions of functions, and old and new datatype definitions.

In 7 out of 13 updates the vsf session struct variable allocated in main was extended

with new fields and needed to be updated. For an idle client, in 7 out of 13 updates

functions on the stack needed to be updated. 5 of those 7 updates were of forward

control flow that had not been executed yet and was pending on the stack. For a file

transfer, in 9 out of 13 updates functions on the stack needed to be updated and 6 of

those 9 updates were of forward control flow. Additionally, a case was observed where

an update applied during a large file transfer possibly needed to escape a loop. During

the update from v1.1.2 to v1.1.3 the new code in do sendfile should be executed only

if a new global flag is on. If the update requires the initial state of this flag to be off,

execution should break out of the loop and stop transferring the file.

Comparison with Ginseng. While Ginseng can support the update of vsf session

struct, it achieves that with data padding whose limitations have already been dis-

cussed. Also note that vsFTPd is an application that forks connection handlers that

do not communicate with each other or their parent. Although Ginseng reported

80

updating vsFTPd, it did not update all processes of the application, or update them

immediately.

The updating experience with vsFTPd met the aims set forth in updating this

application. All versions of the application were systematically updated with modest

effort. However, updating outlined the need for semantic safety analysis to further

reduce programmer involvement. Finally, updating identified that applying updates

immediately would enable the application to possibly execute new versions of func-

tionality that were pending as forward control flow on the stack.

6.2.3 Performance

Two versions of vsFTPd, v2.0.5 and v2.0.6, were compiled with gcc 4.1 on a 2.4Ghz

Xeon and measured the performance of UpStare when enabling various components

of its instrumentation in vsFTPd. These measurements don’t study in detail the

sources of overhead of each stage of stack reconstruction since these were identi-

fied in Chapter 6.1.1. Instead the measurements study the instrumentation of stack

reconstruction as a whole, the instrumentation for multi-process updates, and the

instrumentation for blocking system calls. They also study the instrumentation of

dynamic stack tracing using the POSIX Threads API and using parameter passing.

vsFTPd is not compiled with Ginseng to directly compare performance, although

its performance is compared with published Ginseng results [32, 34]. Compiling with

Ginseng is avoided because Ginseng may be more conservative than necessary in

its type-safety checks and could prohibit updates to some datatypes. This would

reduce the Ginseng instrumentation involved and would require user intervention to

adjust. We did not request vsFTPd source code instrumented with Ginseng as we

did for KissFFT. Another limitation of the measurements is that they don’t report

performance after a streak of applying all updates.

The experiment was setup in a client-server configuration connected with a cross-

over cable to eliminate network fluctuations. This setup was necessary to accurately

measure performance: in preliminary measurements UpStare reported performance

improvement, which was counter-intuitive. vsFTPd was installed to serve files both

from a hard-disk and from an in-memory filesystem to eliminate performance pertur-

bation of hard-disk accesses and identify the worst-case overhead.

Updating during a large file transfer occurred at stack depth 11 (maximum depth

is 16, average 8.9) and took 59.7ms: 50.2ms to block all processes; 0.4ms to unroll the

stack; 0.95ms to unroll the stack of children processes; 0.45ms to reconstruct; 1ms to

reconstruct the stack of children processes. In comparison, Ginseng applies a vsFTPd

update in under 5ms [32] but it does not support multi-process updates.

The experiment measured the latency of establishing a connection and retrieving

a 32-byte file 1000 times and the throughput of retrieving a 300MB file. Table IV

81

vsFTPd Configuration Connection Latency(ms)
32-byte file

Hard-disk Memory

v2.0.5 - NonInstrumented 9.61 9.49
v2.0.5 - CIL 9.64 (0.3%) 9.54 (0.5%)
v2.0.5 - Reconstruction 10.08 (4.9%) 9.99 (5.3%)
v2.0.5 - MultiProcess 10.26 (6.8%) 10.19 (7.4%)
v2.0.5 - BlockingCalls 9.97 (3.8%) 9.76 (2.9%)
v2.0.5 - UpStare-FULL 11.15 (16.0%) 11.06 (16.5%)

v2.0.6 - NonInstrumented 9.62 9.52
v2.0.6 - CIL 9.63 (0.1%) 9.54 (0.2%)
v2.0.6 - UpStare-FULL 11.16 (16.0%) 11.09 (16.5%)
v2.0.5 - update to v2.0.6 11.22 (16.6%) 11.12 (16.8%)

TABLE IV
vsFTPd: Impact of Instrumentation on Latency.

reports the median of 11 runs and shows comparable performance for files served either

from a hard-disk or from memory. Stack reconstruction slows down an updateable

vsFTPd v2.0.5 by ∼0.37-0.50ms (4.9-5.3%), multi-process support by ∼0.65-0.70ms

(6.8-7.4%), and support for blocking system calls by ∼0.27-0.36ms (2.9-3.8%). The

worst-case overhead is from memory: 1.57ms (16.5%), and 1.63ms (16.8%) when

updated to v2.0.6. Ginseng reported overhead of 3% for an updateable and 5% for

an updated vsFTPd [32], but did not report if it eliminated hard-disk accesses or the

network from the experiment. In terms of throughput, an updateable v2.0.5 and an

update to v2.0.6 reported zero overhead, like Ginseng.

The measurements for latency are presented as a worst-case scenario because, in

a practical situation, transferring a file remotely would incur a latency that is con-

siderably larger than the latency of retrieving a 32-byte file. For transferring files,

throughput is more relevant and for that measure UpStare reports zero overhead for

all instrumentations.

The experiment also measured the latency and throughput of a dynamic stack

tracing implementation using the POSIX Threads API and using parameter passing.

These measurements were obtained at a later time and we were unable to repeat the

results of Table IV (although using the same machine) for a direct comparison with the

other instrumentations. The difference is that during this round of measurements the

machine reports ∼0.35-0.40ms improvement. To measure the instrumentation using

the POSIX Threads API, the instrumentation for multi-process support needs to be

enabled to wrap the fork() call for freeing stack traces maintained by the parent.

82

vsFTPd Configuration Connection Latency(ms)
32-byte file

Hard-disk Memory

v2.0.5 - NonInstrumented 9.18 9.09
v2.0.5 - MultiProcess 9.89 (7.7%) 9.79 (7.7%)
v2.0.5 - StackTracing: PThreads 10.78 (16.2%) 10.56 (16.2%)
v2.0.5 - StackTracing: ParameterPassing 10.18 (10.9%) 10.25 (12.8%)

TABLE V
vsFTPd: Impact of Dynamic Stack Tracing on Latency.

But the multi-process support adds overhead for more than just the support for

dynamic stack tracing. Thus the overhead of multi-processing support is measured

and subtracted from the overhead of stack tracing using the POSIX Threads API to

obtain the overhead incurred only by the stack tracing instrumentation using POSIX

Threads.

Table V reports the median of 11 runs of the dynamic stack tracing measurements.

Stack tracing using the PThreads API is computed to have overhead of 0.89ms (9.7%)

from hard-disk and 0.77ms (12.8%) from memory. Stack tracing using parameter

passing has overhead of 1ms (10.9%) from hard disk and 1.16ms (12.8%) from memory.

The overhead in throughput is zero.

UpStare has the potential of reporting good performance after a streak of updates.

Currently UpStare updates only the functions that have been modified instead of

updating all functions of the application. This can have a negative impact on spatial

locality of code and data [34] because a combination of old and new versions of active

functions are spread between two separate memory regions. The update policy could

be extended to update all functions, including all old functions that did not need to

be updated. This would reconstitute the entire program (both code and data), and

active functions would no longer be spread in separate memory regions.

6.3 PostgreSQL Database Management System

PostgreSQL5 is the most advanced open-source database management system. This

application is studied because it is a large, real-world, multi-process application

(∼326K lines of code). The main differences with vsFTPd are that PostgreSQL forks

connection handlers that communicate with each other through shared memory and

maintains a separate process for checkpointing its write-ahead log. The goal was to

update only one version and measure the performance of the instrumentation. Given

5http://www.postgresql.org

83

the size of this application, manually verifying semantic safety for all updates of Post-

greSQL, as done for vsFTPd, would have been laborious and error-prone. Studying

the evolution of PostgreSQL reveals that automated semantic analysis will be needed

to systematically update large applications.

The next sections study the software evolution of PostgreSQL, describe the experi-

ence of applying an update for one version of this application, and present performance

results.

6.3.1 Source Code Evolution

Even though only one version of PostgreSQL is updated in this experiment, it was

beneficial to study the source code evolution of the 7.4.x branch. PostgreSQL is a large

application with the postmaster (the database server process) consuming 215K6lines

of code (source code from src/backend/). Multiple versions of this application are

maintained across multiple branches to provide users with new features and defect

corrections as soon as possible.

For example, branch v7.3.x was being maintained while branches 7.4.x and 8.0.x

were being developed. v7.3.21 and v7.4.19 were released the same day (January 2008),

while v8.0.0 was released ∼2 weeks before v7.4.7 (January 2005). This shows that to

meet user needs large applications need to be maintained in multiple branches for a

long time until they are stable. For example, the 7.4.x branch was maintained for 4

years. Updating from one development branch to a newer branch is likely to cause

instability, because different branches aim to introduce new features that require

drastic changes in the structure of the application. It is not uncommon for users

to choose to update to a newer version of their originally chosen branch (e.g. from

v7.4.6 to v7.4.7) rather than a new branch (e.g. from v7.4.6 to v8.0.0) to minimize

regressions due to possible defects of features provided in the new branch.

6Generated using David A. Wheeler’s ’SLOCCount’.

84

Ver. Date LoC Types Variables Functions

Tot. Same Add. Del. Upd. Tot. Same Add. Del. Upd. Tot. Same Add. Del. Upd.

7.3.21 2008-01-07 189,451 1521 - - - - 789 - - - - 5007 - - - -

7.4.0 2003-11-17 213,869 1721 1029 294 87 398 829 618 124 84 87 5592 1860 940 355 2792
7.4.1 2003-12-22 214,004 1721 1719 0 0 2 827 825 0 2 2 5596 5445 4 0 147
7.4.2 2004-03-08 214,195 1721 1702 1 1 18 829 825 3 1 1 5605 5308 10 1 287
7.4.3 2004-06-14 214,222 1721 1721 0 0 0 829 829 0 0 0 5605 5451 1 1 153
7.4.4 2004-08-16 214,239 1721 1714 0 0 7 829 827 0 0 2 5605 5538 0 0 67
7.4.5 2004-08-18 214,241 1721 1721 0 0 0 829 829 0 0 0 5605 5598 0 0 7
7.4.6 2004-10-22 214,315 1721 1721 0 0 0 830 829 1 0 0 5608 5537 3 0 68
7.4.7 2005-01-31 214,416 1721 1721 0 0 0 830 830 0 0 0 5608 5435 0 0 173
7.4.8 2005-05-09 214,554 1721 1715 3 3 3 830 830 0 0 0 5610 5482 2 0 126
7.4.9 2005-10-04 214,792 1721 1719 0 0 2 831 817 1 0 13 5612 5271 2 0 339

7.4.10 2005-12-12 214,819 1721 1721 0 0 0 830 830 0 1 0 5615 5548 3 0 64
7.4.11 2006-01-09 214,963 1721 1721 0 0 0 836 830 6 0 0 5617 5561 2 0 54
7.4.12 2006-02-14 214,963 1721 1719 0 0 2 836 835 0 0 1 5617 5570 0 0 47
7.4.13 2006-05-23 215,436 1723 1719 2 0 2 839 834 3 0 2 5636 5536 20 1 80
7.4.14 2006-10-16 215,446 1723 1723 0 0 0 839 839 0 0 0 5636 5610 0 0 26
7.4.15 2007-01-08 215,576 1723 1723 0 0 0 839 839 0 0 0 5638 5594 2 0 42
7.4.16 2007-02-05 215,578 1723 1721 0 0 2 839 839 0 0 0 5638 5614 0 0 24
7.4.17 2007-04-23 215,726 1723 1723 0 0 0 840 839 1 0 0 5640 5575 2 0 63
7.4.18 2007-09-17 215,799 1723 1721 0 0 2 842 827 2 0 13 5646 5482 6 0 158
7.4.19 2008-01-07 215,954 1723 1720 0 0 3 844 840 2 0 2 5652 5566 7 1 79

8.0.0 2005-01-19 233,511 1862 1213 234 91 415 905 591 174 113 140 6131 2521 759 280 2851

TABLE VI
PostgreSQL: Source Code Evolution.

85

Table VI studies the evolution of the PostgreSQL 7.4.x branch (without passing

–keepunused to CIL). First note the drastic differences between v7.3.21 and v7.4.0

which confirm that different development branches introduce new features that sig-

nificantly change the structure of the application. The evolution to v7.4.0 adds 294

new datatypes (out of 300 total; 98.0%) and deletes 87 datatypes (out of 91; 95.6%).

It causes the highest number of variable modifications among the entire 7.4.x branch.

It results in 124 additions (out of 143; 86.7%), 88 deletions (out of 92; 95.7%), and 87

updates (out of 123; 70.7%). Significant changes are also observed in the evolution

of functions among the entire branch with 940 new functions added (out of 1,004;

93.6%), 355 deleted (out of 359; 98.9%), and 2,792 functions updated (out of 5,007

in v7.4.0; 55.8%). Similar differences are also observed between versions v7.4.19 and

v8.0.0 which belong to different development branches.

Comparison with vsFTPd. PostgreSQL is a much larger application than vs-

FTPd and it is more actively developed. PostgreSQL released a new version on

average every 2.6 months (19 releases over 50 months) while vsFTPd released a new

version on average every 5 months (13 releases over 66 months). If the source code

evolution of v7.4.0 is excluded, an average of 105.5 functions are updated by each new

version of PostgreSQL while vsFTPd updates on average 8.3 functions per new ver-

sion. To systematically apply updates in a large application like PostgreSQL semantic

analysis will be needed to automatically verify safety.

6.3.2 Experience

Due to the size of PostgreSQL, UpStare was used to apply only one update from

v7.4.16 to v7.4.17. The aim was demonstrating that immediate updates (atomic

and with bounded delay) could be applied in this application. Another aim was

demonstrating that the approach and implementation are robust and can be applied

to a large, real-world application.

The update use case considered for this application involved a client connecting

to the server, authenticating correctly, waiting idle on the command-line and then

applying the update. Under this use case the server has forked a connection han-

dler that is blocked indefinitely on a recv() call waiting for client input through the

network. The server is blocked indefinitely on an accept() call waiting for more in-

coming connections. Also note that the postmaster maintains a separate process for

checkpointing its write-ahead log. This process is blocked in a select() call and is

configured by default to awake every 5 minutes to produce the checkpoint.

A dynamic update was automatically prepared using the patch generator. v7.4.17

updated 64 functions and added one variable. No user-specified continuation map-

pings were needed for this update and it was manually verified that for the use case

examined the update was semantically safe. User-specified mappings will probably be

86

needed to update from other update points (9931 update points where automatically

inserted in v7.4.16).

UpStare applied an immediate update under this use case. An update request was

issued to the parent process, which coordinated atomic stack reconstruction with the

forked connection handler and the checkpointing process. The instrumentation forced

all these processes to break out of their blocked system calls and apply the update

immediately. A major advantage of UpStare compared to other DSU systems is that

UpStare can apply this update without having to wait for all of the following three

conditions to hold: (a) wait up to 5 minutes for the checkpointing process to wake-up,

(b) wait for a new connection to arrive, and (c) wait for the client to issue a query.

Even though the particular update applied did not violate safety among multiple

processes, an update to PostgreSQL outlines the need to apply immediate updates.

Forked connection handlers in PostgreSQL communicate with each other through

shared memory. A datatype update needs to be applied atomically among all forked

connection handlers if type-safety is to be guaranteed (as described in Chapter 2.3).

The correctness of the instrumentation was tested using the PostgreSQL testsuite.

The instrumented v7.4.16 and the update to v7.4.17 passed 85 (out of 93) tests of the

testsuite, both in serial and parallel execution. For the remaining 8 testcases, MPatrol

and Valgrind were used to verify a non-instrumented PostgreSQL was causing buffer

overflows, illegal memory accesses, and uses of uninitialized data. While these access

errors seem to produce no problems for a non-instrumented PostgreSQL, they were

contributing to failures of other testcases or crashes of a PostgreSQL instrumented

with stack reconstruction. Since the memory corruption bugs of PostgreSQL can

produce unpredictable results the implementation cannot be guaranteed to work in

the presence of such bugs.

6.3.3 Performance

An updateable PostgreSQL v7.4.16 was compiled with gcc 4.1 on a 2.4Ghz Xeon

and the performance of UpStare was measured when enabling various components

of its instrumentation. The update applied by UpStare occurred at stack depth 10

(maximum depth is 35, average 15) and took 60ms: 53.7ms to block all processes;

0.2ms to unroll the stack; 0.45ms to unroll the stack of children processes; 0.3ms to

reconstruct the stack; 0.4ms to reconstruct the stack of children processes.

The experiment measured over a cross-over cable the overhead of an updateable

v7.4.16 compared to a non-instrumented v7.4.16 using the PostgreSQL pgbench tool

that runs a “TPC-B like” benchmark: five SELECT, UPDATE, and INSERT com-

mands per transaction. This benchmark measured the time to run 100,000 transac-

tions after a ramp-up time of 40,000 transactions. Table VII measures the throughput

when the database is loaded both on hard-disk and in memory. Stack reconstruction

87

PostgreSQL Configuration pgbench throughput (t/s)
100,000 transactions

Hard-disk Memory

v7.4.16 - NonInstrumented 175.6 319.7
v7.4.16 - CIL 169.7 (3.4%) 319.0 (0.2%)
v7.4.16 - Reconstruction 133.0 (24.3%) 199.2 (37.7%)
v7.4.16 - MultiProcess 170.5 (2.9%) 312.9 (2.1%)
v7.4.16 - BlockingCalls 161.1 (8.3%) 293.4 (8.2%)
v7.4.16 - UpStare-FULL 130.7 (25.6%) 189.7 (40.7%)

v7.4.17 - NonInstrumented 174.3 317.8
v7.4.17 - CIL 171.3 (1.7%) 316.6 (0.4%)
v7.4.17 - UpStare-FULL 128.0 (26.6%) 189.8 (40.3%)
v7.4.16 - update to v7.4.17 131.8 (24.4%) 188.8 (40.6%)

TABLE VII
PostgreSQL: Impact of Instrumentation on Throughput.

reports 37.7% overhead in memory but this is a worst-case scenario because a database

needs stable storage to be durable (24.3% on hard-disk). Although only one client

connection was established overall, multi-process support reported overhead 2.1%-

2.9% and blocking system calls 8.3%. An updateable v7.4.16 was 40.7% slower in

memory and 25.6% slower on hard-disk. For these cases, the transactions were all ex-

ecuted over the same connection. The numbers show that each transaction consumes

5.7ms and 7.7ms for the non-instrumented and updateable v7.4.16 cases respectively.

This translates into a latency overhead of 34.4% for each transaction on average. This

latency is for transactions over the same connection.

To measure a worst-case scenario, this experiment also measured the latency for

establishing a connection and running only one transaction over the connection. The

latency was measured by running a transaction 1000 times (1000 connections were

established and torn down). Table VIII reports that the combination of stack recon-

struction, multi-process support and blocking system calls support have a severe im-

pact on latency. When isolated, these features report a total overhead of 48.4-56.2%.

However, when combined an updateable v7.4.16 is 22.41-22.47ms slower (87.7-95.1%),

and 89.2-96.4% slower when updated to v7.4.17. We speculate this is again due to

missed optimization opportunities by the compiler. Note that the overhead due to

reconstruction is comparable to that of KissFFT. We speculate that this is due to

the nature of the application (data-intensive). A performance measurement could

not be obtained for Ginseng because Ginseng could not compile PostgreSQL but it is

88

PostgreSQL Configuration pgbench latency (ms)
Average of 1000 transactions
Hard-disk Memory

v7.4.16 - NonInstrumented 25.62 23.56
v7.4.16 - CIL 25.70 (0.3%) 23.77 (0.9%)
v7.4.16 - Reconstruction 34.98 (36.5%) 33.03 (40.2%)
v7.4.16 - MultiProcess 27.33 (6.7%) 25.44 (8.0%)
v7.4.16 - BlockingCalls 26.94 (5.2%) 25.45 (8.0%)
v7.4.16 - UpStare-FULL 48.09 (87.7%) 45.97 (95.1%)

v7.4.17 - NonInstrumented 25.56 23.53
v7.4.17 - CIL 25.73 (0.7%) 23.64 (0.5%)
v7.4.17 - UpStare-FULL 48.34 (89.1%) 45.85 (94.9%)
v7.4.16 - update to v7.4.17 48.36 (89.2%) 46.21 (96.4%)

TABLE VIII
PostgreSQL: Impact of Instrumentation on Latency.

expected that the data accesses through pointer indirection in Ginseng would result

in high overhead.

The experiment also measured the latency and throughput when instrumented us-

ing dynamic stack tracing. Only the dynamic stack tracing implementation using

the POSIX Threads API was measured. The dynamic stack tracing implementation

using parameter passing failed to compile PostgreSQL because this implementation is

not yet finished. The measurements were obtained at a later time and were unable to

repeat the results of Table VIII for a direct comparison with the other instrumenta-

tions. The difference is that during this round of measurements the machine reports

∼0.06-0.10ms improvement. Similar to the measurements in vsFTPd, the overhead

of multi-processing support is measured and subtracted from the overhead of stack

tracing using the POSIX Threads API.

Table IX reports throughput of the dynamic stack tracing measurement. Stack

tracing using the PThreads API is computed to have overhead of 12.3% from hard-

disk and 7.1% from memory. Table X measures the latency of stack tracing using

the PThreads API which is computed to be 119.2ms (779.2%) from hard-disk and

197.4ms (854.9%) from memory.

6.4 Conclusion

UpStare was evaluated on three applications. It was used to study in detail the over-

head of stack reconstruction in the data-intensive KissFFT, to systematically apply

13 updates (5.5 years worth of updates) to vsFTPd, the very secure FTP daemon

89

PostgreSQL Configuration pgbench throughput (t/s)
100,000 transactions

Hard-disk Memory

v7.4.16 - NonInstrumented 173.48 323.1
v7.4.16 - MultiProcess 169.7 (2.2%) 320.4 (8.4%)
v7.4.16 - StackTracing: PThreads 148.39 (14.5%) 273.0 (15.5%)
v7.4.16 - StackTracing: ParameterPassing - - - -

TABLE IX
PostgreSQL: Impact of Dynamic Stack Tracing on Throughput.

PostgreSQL Configuration pgbench latency (ms)
Average of 1000 transactions
Hard-disk Memory

v7.4.16 - NonInstrumented 25.56 23.46
v7.4.16 - MultiProcess 28.60 (11.9%) 26.26 (11.9%)
v7.4.16 - StackTracing: PThreads 227.77 (791.1%) 226.8 (866.8%)
v7.4.16 - StackTracing: ParameterPassing - - - -

TABLE X
PostgreSQL: Impact of Dynamic Stack Tracing on Latency.

(about 12,000 lines of code), and to apply one update to the PostgreSQL database

management system (over 200,000 lines of code). It was also used to study the over-

head of the instrumentation in applying multi-process updates, in offering bounded

delay in the presence of blocking system calls, and in dynamically maintaining stack

traces for dynamic safety checking.

The performance of UpStare was compared to Ginseng [32], which has been suc-

cessful in applying DSU with a combination of updating mechanisms. For KissFFT,

a data-intensive application, UpStare is 60%-140% faster because it eliminates data-

access indirection. For vsFTPd v2.0.5, UpStare reports a 15% slower latency than

Ginseng, but it reports zero overhead in the throughput of vsFTPd. It also reports

25% overhead in the throughput of PostgreSQL v7.4.16 (35% latency overhead; 89%

worst-case), which is a data-intensive application Ginseng fails to compile.

Updates were applied under uses cases that are typical for each application and

the updates were immediate. The updates were prepared automatically using the

patch-generator, they needed minimal manual adjustments from the user, and they

were manually verified for semantic safety for the use cases considered. For the

13 updates applied to vsFTPd, a total of 11 continuation mappings were manually

90

defined and this number could have been reduced with additional engineering effort.

However it was also necessary to define more complex state transformations (22 lines

of code total) for 4 updates to prepare the state of the new version as it would

have been prepared had the application been started from the new version from the

beginning. These more complex state transformations outline the need for automated

analysis that verifies semantic safety of updates. Semantic analysis will be necessary

to systematically apply updates to large applications, like PostgreSQL.

There are three limitations in the current implementation of UpStare that affect

performance. First, the implementation can lead to missed optimization opportu-

nities, and this can lead to high overhead in applications containing relatively long

loop bodies that present such optimization opportunities. Second, UpStare offers

function-indirection to allow implementing updating models other than the whole-

program update mechanism. Function-indirection and the overhead it adds could

be eliminated entirely. Third, the support for blocking system calls has not been

optimized.

The performance of applying a streak of all updates was not studied. UpStare

should be able to report good performance in this scenario because it is capable of

reconstituting the entire program (both code and data) so that the application will

no longer be spread in separate memory regions.

Two possible implementations of dynamic stack tracing were studied as a mecha-

nism for providing dynamic safety checks. Dynamic stack tracing using the PThreads

API outperforms tracing using parameter passing.

Chapter 7

CONCLUSION

The primary contributions of this dissertation are:

• A new dynamic whole-program update mechanism that guarantees representa-

tion consistency: before the update only old code is executed, after the update

only new code is executed, and at no time does the application expect differ-

ent representations of state (such as global variables or stack-frame contents).

Also a new DSU mechanism of stack reconstruction that implements this update

mechanism.

• Immediate updates (atomic and with bounded delay) for multi-threaded and

multi-process applications.

• High updateability by allowing complex updates from all application states that

are valid for update without interrupting the service provided by the application,

given some user input.

• Dynamic software updates with no data-access indirection.

• A dynamic stack tracing mechanism for building context-sensitive program call

graphs, implemented at a high-level (in source-code), to enforce user-supplied

safety constraints.

• A practical DSU system implementation for multi-threaded and multi-process

C applications. UpStare is the most flexible implementation of a DSU system

to date and is as safe as existing DSU systems.

7.1 Future Work

This dissertation identified how the implementation of UpStare can be improved.

These improvements are summarized next along with a description of future work

that extends the design of UpStare.

The current UpStare implementation can be improved by:

• Transforming applications to allocate I/O data buffers on the heap instead of

the stack, in support of blocking system calls. This will eliminate the need to

copy data back to the stack when an I/O operation completes.

92

• Improving the identification (not the selection) of default execution continuation

mappings to use strings instead of numeric ids. This will further minimize the

input needed by a user in defining continuation mappings.

• Integrating support for automatically mapping pointers, which was developed in

previous work, but without continuously tracking memory accesses. Computing

through static analysis pointer variables that may be manipulated in unexpected

ways and automatically producing transaction-safety constraints for them.

• Integrating support for multi-threaded applications that use counting

semaphores, which was developed in previous work.

• Removing function-pointer indirection, since it is not needed for stack recon-

struction.

• Reconstituting the entire code of the new version of the applications, instead of

continuing to execute old versions of functions that did not need to be updated.

This will improve spatial locality of code and data, which should offer good

performance after a streak of updates.

Future work includes exploring semantic safety analysis, defining an update de-

scription meta-language, applying updates of in-transit data, and applying updates

of files. The aim is to reduce the input required by the user in applying DSU and to

improve updateability.

Semantic safety analysis will be necessary to systematically apply updates to large

applications. It would be beneficial to explore semantic analysis to minimize the

amount of manual semantic safety verification that is currently needed by a user,

and to minimize the amount of manual state mappings a user needs to provide. One

direction is to identify the nature of most updates, classify them, and prove that for

these common cases the updates are semantically safe. This would allow a semantic

analyzer to automatically verify semantic safety for the majority of updates, thus

reducing the verification that the user must manually carry out. Another direction

is to leverage program slicing to automatically produce transformations of complex

state that cannot be easily automated with a patch-generator. These transformations

require preparing program state as it would have been prepared had the application

been started from the new version from the beginning. Producing these transfor-

mations automatically would reduce the input needed by the user in defining state

mappings in large applications.

Semantic analysis can also benefit from user annotations created when application

source code is modified. It is possible to define an update description meta-language

that can be integrated in the software development process. Through this language a

93

programmer can provide hints for DSU, such as marking a code change as semantics-

preserving, or a field addition as changing the semantics of existing fields.

In-transit data, such as data transmitted through sockets, shared memory or pipes,

cannot be updated because the data reside inside the network or the operating system.

One way to handle them is to install data transformers at the reception end-points

and automatically transform the data to the new representation. Another approach

is to consider both the client and the server in the update scope. An update can

be applied only after it is detected that no data are still in-transit. This can be

implemented by pausing all clients, transmitting a special marker message through

each socket, shared memory region, or pipe, and applying the update after all marker

messages are received at the other end.

Another open problem is updating files on disk. Applying a data transformation in

an atomic step in a large data file (such as the persistent storage of PostgreSQL) would

require a long time to complete. Although the update would be applied with bounded

delay, a large delay would essentially result in downtime. Since it is desirable for an

update to not interrupt the service provided by an application, it is possible to install

data transformers (similar to handling in-transit data) at the endpoints where data

are accessed (such as read(),write()), apply an update that does not transform data

files, and resume application execution. The transformers installed can be temporary.

A low-priority datatype transformation thread can be converting the file permanently

to use the new data representation. Write requests that include new datatype fields

can be preserved in a separate temporary file and consulted by the transformation

thread, until they are eventually coalesced into the new representation.

7.2 Program Slicing

Program slicing [121, 122, 123, 124] has the potential of solving the update safety

problem (see Chapter 2.1). A program slice consists of all statements of a program

that might affect the value of a variable x at a point p. Program slicing can be used

to identify semantic differences [43, 125], and semantic equivalence [126], between two

versions of a program and integrate [127, 128] the two versions together. We expect

program slicing will be pivotal in applying semantically safe DSU.

Program slices can be computed statically [129, 130] or dynamically [131, 45, 46].

They are valuable in debugging [132], testing [133, 134], program integration [135],

procedure extraction [136], and software engineering and maintenance [137, 44, 46].

REFERENCES

[1] David Oppenheimer, Aaron Brown, James Beck, Daniel Hettena, Jon Kuroda,
Noah Treuhaft, David A. Patterson, and Kathy Yelick, “Roc-1: Hardware
support for recovery-oriented computing,” IEEE Transactions on Computers,
vol. 51, pp. 2002, 2002. 1

[2] Steve Parker, “A simple equation: IT on = Business on,” The IT Journal.
Hewlett Packard, 2001. 1

[3] Meta Group, “IT Performance Engineering and Measurement Strategies: Quan-
tifying Performance and Loss,” October 2000. 1

[4] Cisco Systems, “Enterprise Continuance Strategies for the Cisco ONS 15500
Series: Multiservice DWDM Aggregation and Transport Platforms,” 2008. 1

[5] Contigency Planning & Management magazine and KPMG, “Business Con-
tinuity Study: A review of the factors influencing Business Continuity in the
next millenium,” Tech. Rep., March 2002. 1

[6] Computer Weekly, “Downtime hits ambulance service,” August 2006. 1

[7] Nancy C. Nelson, “Downtime procedures for a clinical information system: a
critical issue,” Journal of Critical Care, vol. 22, no. 1, March 2007. 1

[8] BBC News, “Massive air disruption across UK,” June 2004. 1

[9] Woody Baird, “An air traffic control failure is examined,” USA Today, October
2007. 1

[10] Rachel Stevenson, “Flight delays continue after air traffic control failure,” The
Guardian, September 2008. 1

[11] Mikael Ronstrom, “Database requirement analysis for a third generation mobile
telecom system,” in Databases in Telecommunications, 1999, pp. 90–105. 1

[12] Andy Cress, “Linux Clustering Software for Telecom,” The Telecom System
View, vol. 1.5, no. 14, January 2004. 1

[13] Jim Byrnes and Ruthlyn Newell, “AT&T announces cause of frame relay net-
work outage,” Risk Digest, vol. 19, no. 72, May 1998. 1

95

[14] Alex Berenson, “Software failure halts Big Board trading for over an hour,”
New York Times, March 2001. 1

[15] Leo King, “London Stock Exchange confirms network software caused costly
outage,” Computerworld UK, September 2008. 1

[16] Brian Krebbs, “Cyber Incident Blamed for Nuclear Power Plant Shutdown,”
Washington Post, June 5 2005. 1

[17] Jack J. Woehr, “Really remote debugging for real-time systems: A Conversation
with Glenn Reeves,” Dr. Dobb’s Journal, November 1999. 1

[18] Alexander C. Calder, “Flight Software Design and On-Orbit Maintenance,”
Tech. Rep., Computer Sciences Corporation, November 2007. 1

[19] StackSafe, “IT Ops Research Report: Downtime and Other Top Concerns,”
July 2007. 1

[20] StackSafe, “IT Ops Research Report: Six Out of 10 Organizations Cite Appli-
cation Changes as Leading Cause of Downtime,” July 2007. 1

[21] RTI, “The Economic Impacts of Inadequate Infrastructure for Software Test-
ing,” Tech. Rep. Planning Report 02-03, May 2002. 1

[22] David E. Lowell, Yasushi Saito, and Eileen J. Samberg, “Devirtualizable virtual
machines: Enabling general, single-node, online maintenance,” in ASPLOS,
2004. 1

[23] Deepak Gupta, Pankaj Jalote, and Gautam Barua, “A formal framework for on-
line software version change,” Software Engineering, vol. 22, no. 2, pp. 120–131,
1996. 2, 6, 15, 25, 27, 33

[24] I. Lee., DYMOS: A Dynamic Modification System, Ph.D. thesis, University of
Wisconsin, Department of Computer Science, Madison, April 1983. 2, 19, 26,
27, 33

[25] Michael W. Hicks, Jonathan T. Moore, and Scott Nettles, “Dynamic software
updating,” in SIGPLAN Conference on Programming Language Design and
Implementation, 2001, pp. 13–23. 2

96

[26] Gautam Altekar and Ilya Bagrak and Paul Burstein and Andrew Schultz,
“OPUS: Online Patches and Updates for Security,” in 14th USENIX Security
Symposium, July 2005, pp. 287–302. 2, 26, 27, 31, 33, 58

[27] Janghoon Lyu, Youngjin Kim, Yongsub Kim, and Inhwan Lee, “A procedure-
based dynamic software update,” in DSN, 2001, pp. 271–284. 2, 19, 26, 27

[28] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew, “Polus: A
powerful live updating system,” in ICSE ’07: Proceedings of the 29th Interna-
tional Conference on Software Engineering, Washington, DC, USA, 2007, pp.
271–281, IEEE Computer Society. 2, 19, 20, 26, 27, 29, 33, 46

[29] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams, Concur-
rent Programming in ERLANG (Second Edition), Prentice Hall, 1996. 2, 19,
27, 33

[30] Dominic Duggan, “Type-based hot swapping of running modules,” in Interna-
tional Conference on Functional Programming, 2001, pp. 62–73. 2, 8, 20

[31] Chandrasekhar Boyapati and Rasekhar Boyapati and Barbara Liskov and Liuba
Shrira and Chuang-hue Moh and Steven Richman, “Lazy Modular Upgrades
in Persistent Object Stores,” in In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA, 2003, pp. 403–417. 2, 33

[32] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol, “Practical
Dynamic Software Updating for C,” in Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI), June 2006. 2, 3,
19, 20, 27, 33, 46, 66, 80, 81, 89

[33] Kristis Makris and Kyung Dong Ryu, “Dynamic and Adaptive Updates of Non-
Quiescent Subsystems in Commodity Operating System Kernels,” in EuroSys
2007, March 2007. 2, 19, 20, 25, 27, 33, 58

[34] Iulian Neamtiu, Practical Dynamic Software Updating, Ph.D. thesis, University
of Maryland, August 2008. 2, 8, 27, 80, 82

[35] Andrew Baumann, Gernot Heiser, Jonathan Appavoo, Dilma Da Silva, Orran
Krieger, and Robert W. Wisniewski, “Providing Dynamic Update in an Op-
erating System,” in USENIX Symposium on Operating Systems Design and
Implementation. April 2005, USENIX Association. 2, 19, 24, 33

97

[36] Iulian Neamtiu and Michael Hicks, “Safe and timely dynamic updates for multi-
threaded programs,” in Proceedings of the ACM Conference on Programming
Language Design and Implementation, 2009. 2, 19, 20, 27, 33

[37] Jeff Arnold and M. Frans Kaashoek, “KSplice: Automatic Rebootless Kernel
Updates,” in EuroSys 2009, April 2009. 2, 19, 20, 25, 27, 33

[38] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian
Neamtiu, “Mutatis Mutandis: Safe and flexible dynamic software updating,”
ACM Transactions on Programming Languages and Systems (TOPLAS), 2006.
3, 8, 20, 27, 33, 57

[39] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis, “Con-
textual effects for version-consistent dynamic software updating and safe con-
current programming,” in Proceedings of the ACM Conference on Principles of
Programming Languages (POPL), Jan. 2008, pp. 37–50. 3, 8, 20, 27, 33, 57

[40] Robert Love, “Lowering latency in linux: introducing a preemptible kernel,”
Linux Journal, vol. 2002, no. 97, pp. 1, 2002. 4

[41] Dipankar Sarma and Paul E. McKenney, “Making RCU safe for deep sub-
millisecond response realtime applications,” in In Proceedings of the 2004
USENIX Annual Technical Conference, Berkeley, CA, USA, 2004, pp. 32–32,
USENIX Association. 4

[42] Paul E. McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger, Rusty Rus-
sell, Dipankar Sarma, and Maneesh Soni, “Read-copy update,” in Ottawa Linux
Symposium, 2001, pp. 338–367. 4

[43] Susan Horwitz, “Identifying the semantic and textual differences between two
versions of a program,” SIGPLAN Notices, vol. 25, no. 6, pp. 234–245, June
1990. 7, 93

[44] Susan Horwitz and Thomas W. Reps, “The use of program dependence graphs
in software engineering,” in International Conference on Software Engineering,
1992, pp. 392–411. 7, 93

[45] Hiralal Agrawal and Joseph R. Horgan, “Dynamic program slicing,” in PLDI
’90: Proceedings of the ACM SIGPLAN 1990 Conference on Programming Lan-
guage Design and Implementation, 1990. 7, 93

98

[46] Árpád Beszédes, Tamas Gergely, Zsolt Mihaly Szabo, Janos Csirik, and Tibor
Gyimothy, “Dynamic Slicing Method for Maintenance of Large C Programs,” in
5th European Conference on Software Maintenance and Reengineering (CSMR),
2001, pp. 105–113. 7, 93

[47] Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou, “Efficient online validation
with delta execution,” in ASPLOS ’09: Proceeding of the 14th international
conference on Architectural support for programming languages and operating
systems, New York, NY, USA, 2009, pp. 193–204, ACM. 7

[48] Sameer Ajmani, Automatic Software Upgrades for Distributed Systems, Ph.D.
thesis, MIT, September 2004. 18, 28

[49] David E. Lowell, Yasushi Saito, and Eileen J. Samberg, “Devirtualizable virtual
machines enabling general, single-node, online maintenance,” in ASPLOS-XI:
Proceedings of the 11th international conference on Architectural support for
programming languages and operating systems, New York, NY, USA, 2004, pp.
211–223, ACM. 18, 29

[50] Shaya Potter and Jason Nieh, “Reducing downtime due to system maintenance
and upgrades,” in LISA ’05: Proceedings of the 19th conference on Large Instal-
lation System Administration Conference, Berkeley, CA, USA, 2005, pp. 6–6,
USENIX Association. 18, 31

[51] Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille, “Dynamic pro-
gram instrumentation for scalable performance tools,” 1994 Scalable High Per-
formance Computing, May 1994. 18, 24, 33

[52] Ariel Tamches and Barton P. Miller, “Fine-Grained Dynamic Instrumentation
of Commodity Operating System Kernels,” in Third Symposium on Operating
System design and implementation, February 1999. 18, 19, 24, 33

[53] David J. Pearce, Paul H. J. Kelly, Tony Field, and Uli Harder, “GILK: A Dy-
namic Instrumentation Tool for the Linux Kernel,” in Computer Performance
Evaluation / TOOLS, 2002, pp. 220–226. 18, 19, 24, 33

[54] J. Maebe, M. Ronsse, and K. De Bosschere, “Diota: Dynamic instrumentation,
optimization and transformation of applications,” in Compendium of Work-
shops and Tutorials held in conjuction with PACT ’02, 2002. 19, 24

99

[55] Jonas Maebe, Michiel Ronsse, and Koen De Bosschere, “Instrumenting JVMs
at the machine code level,” in 3rd PA3CT-symposium, September 2003. 19

[56] Jonas Maebe and Koen De Bosschere, “Instrumenting self-modifying code,”
in Proceedings of the Fifth International Workshop on Automated Debugging
(AADEBUG 2003), September 2003. 19

[57] Galen Hunt and Doug Brubacher, “Detours: Binary Interception of Win32
Functions,” in Proceedings of the 3rd USENIX Windows NT Symposium, July
1999, pp. 135–143. 19, 26, 33

[58] Amitabh Srivastava, Andrew Edwards, and Hoi Vo, “Vulcan: Binary transfor-
mation in a distributed environment,” Tech. Rep. MSR-TR-2001-50, Microsoft
Research, April 2001. 19, 26, 33

[59] Michael Hicks, Dynamic Software Updating, Ph.D. thesis, University of Penn-
sylvania, August 2001. 19, 20, 27

[60] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith, “Dealing with disaster:
Surviving misbehaved kernel extensions,” in Proceedings of the 2nd Symposium
on Operating Systems Design and Implementation, Seattle, Washington, 1996,
pp. 213–227. 19, 23

[61] H.Chen, R. Chen, F.Zhang, B.Zhang, and P-C. Yew, “Live Updating Operating
Systems Using Virtualization,” in VEE, 2006. 19, 29, 33

[62] Amit Shanhbhag, “Portable cross-version checkpointing and recovery for dy-
namic software updates,” M.S. thesis, Arizona State University, August 2003.
21, 31, 32, 33

[63] Kalyan S. Perumalla and Richard M. Fujimoto, “Efficient large-scale process-
oriented parallel simulations,” in WSC ’98: Proceedings of the 30th conference
on Winter simulation, Los Alamitos, CA, USA, 1998, pp. 459–466, IEEE Com-
puter Society Press. 21, 31, 33

[64] H. Massalin, Synthesis: An Efficient Implementation of Fundamental Operating
System Services, Ph.D. thesis, Columbia University, 1992. 23

[65] C. Cowan, T. Autrey, C. Krasic, C. Pu, and J. Walpole, “Fast concurrent
dynamic linking for an adaptive operating system,” 1996. 23

100

[66] Seltzer M., Endo Y., Small C., and Smith K., “An Introduction to the Archi-
tecture of the VINO Kernel,” Tech. Rep. 34-94, Harvard University, Computer
Science, 1994. 23

[67] M. I. Seltzer and C. Small, “Self-monitoring and self-adapting operating sys-
tems,” Proceedings of the Sixth workshop on Hot Topics in Operating Systems,
1997. 23

[68] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole, “Exokernel: An
Operating System Architecture for Application-Level Resource Management,”
in Symposium on Operating Systems Principles, 1995, pp. 251–266. 23

[69] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker,
S. Eggers, and C. Chambers, “Extensibility, safety and performance in the
SPIN operating system,” in 15th Symposium on Operating Systems Principles,
Copper Mountain, Colorado, 1995, pp. 267–284. 23

[70] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Robert W. Wisniewski,
Dilma Da Silva, and Orran Krieger, “System support for online reconfigura-
tion.,” in Proceedings of the 2003 USENIX Technical Conference. 2003, pp.
141–154, USENIX Association. 24

[71] Aaron J. Goldberg and John L. Hennessy, “Performance debugging shared
memory multiprocessor programs with mtool,” in Supercomputing ’91: Pro-
ceedings of the 1991 ACM/IEEE conference on Supercomputing, New York,
NY, USA, 1991, pp. 481–490, ACM. 24

[72] A. Srivastava and A. Eustace, “ATOM: A System for Building Customized
Program Analysis Tools,” in ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation (PLDI). June 1994, ACM SIGPLAN. 24

[73] J.R. Larus and E. Schnarr, “EEL: Machine-Independent Executable Editing,”
in ACM SIGPLAN 1995 Conference on Programming Language Design and
Implementation (PLDI). June 1995, ACM SIGPLAN. 24

[74] Thomas Ball and James R. Larus, “Optimally profiling and tracing programs,”
ACM Transactions on Programming Languages and Systems, vol. 16, no. 4, pp.
1319–1360, July 1994. 24

101

[75] B.M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic instrumentation
of production systems,” in Proceedings of the 6th Symposium on Operating
Systems Design and Implementation, 2004. 24

[76] Ronald G. Minnich, “A dynamic kernel modifier for Linux,” in Proceedings of
the LACSI Symposium, September 2002. 24

[77] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia, “Dynamo: a trans-
parent dynamic optimization system,” in PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and implementa-
tion, New York, NY, USA, 2000, pp. 1–12, ACM. 24

[78] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood, “Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation,”
in PLDI 2005, June 2005. 24

[79] Deepak Gupta and Pankaj Jalote, “On-line software version change using state
transfer between processes,” Software - Practice and Experience, vol. 23, no. 9,
pp. 949–964, 1993. 26

[80] Michael Hicks, Jonathan T. Moore, and Scott Nettles, “Dynamic software
updating,” in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. June 2001, pp. 13–23, ACM. 27, 33

[81] Yueh-Feng Lee and Ruei-Chuan Chang, “Hotswapping linux kernel modules,”
Journal of Systems and Software, vol. 79, no. 2, pp. 163–175, February 2006.
27

[82] Bettina Kemme and Gustavo Alonso, “Don’t Be Lazy, Be Consistent: Postgres-
R, A New Way to Implement Database Replication,” in VLDB ’00: Proceedings
of the 26th International Conference on Very Large Data Bases, San Francisco,
CA, USA, 2000, pp. 134–143, Morgan Kaufmann Publishers Inc. 28

[83] Sameer Ajmani and Barbara Liskov and Liuba Shrira, “Modular Software
Upgrades for Distributed Systems,” in European Conference on Object-Oriented
Programming (ECOOP), July 2006. 28

[84] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley, “Dynamic
Software Updates: A VM-centric Approach,” June 2009. 29

102

[85] Bowen Alpern and C. Richard Attanasio and John J. Barton and Anthony
Cocchi and Susan Flynn Hummel and Derek Lieber and Ton Ngo and Mark
F. Mergen and Janice C. Shepherd and Stephen E. Smith, “Implementing
Jalapeño in Java,” in OOPSLA, 1999, pp. 314–324. 29

[86] Stephen J. Fink and Feng Qian, “Design, implementation and evaluation of
adaptive recompilation with on-stack replacement,” in CGO ’03: Proceedings
of the International Symposium on Code Generation and Optimization, Wash-
ington, DC, USA, 2003, pp. 241–252, IEEE Computer Society. 29, 31

[87] Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and J. Fritz Barnes,
“Runtime support for type-safe dynamic java classes,” in In Proceedings of the
Fourteenth European Conference on Object-Oriented Programming. 2000, pp.
337–361, Springer-Verlag. 29

[88] Tobias Ritzau Linkping and Tobias Ritzau, “Dynamic deployment of java ap-
plications,” in In Java for Embedded Systems Workshop, 2000. 29

[89] Alessandro Orso, Anup Rao, and Mary Jean Harrold, “A Technique for Dy-
namic Updating of Java Software,” in ICSM ’02: Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM’02), 2002. 29

[90] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li, “Libckpt: Trans-
parent Checkpointing under Unix,” in Proceedings of USENIX Winter1995
Technical Conference, New Orleans, Louisiana/U.S.A., Jan. 1995, pp. 213–224.
30

[91] Richard Koo and Sam Toueg, “Checkpointing and rollback-recovery for dis-
tributed systems,” in ACM ’86: Proceedings of 1986 ACM Fall joint computer
conference, Los Alamitos, CA, USA, 1986, pp. 1150–1158, IEEE Computer
Society Press. 30

[92] Georg Stellner, “CoCheck: Checkpointing and Process Migration for MPI,”
in Proceedings of the 10th International Parallel Processing Symposium (IPPS
’96), Honolulu, Hawaii, 1996. 30

[93] Barak Amnon and La’adan Oren, “The MOSIX Multicomputer Operating Sys-
tem for High Performance Cluster Computing.,” Journal of Future Generation
Computer Systems, vol. 13, no. 4-5, pp. 361–372, March 1998. 30

103

[94] Balkrishna Ramkumar and Volker Strumpen, “Portable checkpointing for het-
erogeneous architectures,” in In Symposium on Fault-Tolerant Computing. 1997,
pp. 58–67, Kluwer Academic Press. 30, 33

[95] Kuo-Feng Ssu and W. Kent Fuchs, “PREACHES - portable recovery and check-
pointing in heterogeneous systems,” in Symposium on Fault-Tolerant Comput-
ing, 1998, pp. 38–47. 30

[96] Feras Karablieh and Rida Bazzi, “Heterogeneous Checkpointing for Multi-
threaded Applications,” in 21st Symposium on Reliable Distributed Systems
(SRDS), October 2002. 30, 52, 54

[97] Feras Karablieh, Rida Bazzi, and Margaret Hicks, “Compiler-Assisted Hetero-
geneous Checkpointing,” in 20th Symposium on Reliable Distributed Systems
(SRDS), October 2001. 30, 31, 33, 45

[98] Stefan Fünfrocken, “Transparent migration of java-based mobile agents - cap-
turing and reestablishing the state of java programs,” in In Mobile Agents.
1998, pp. 26–37, Springer-Verlag. 30, 31, 32, 33

[99] Jason Nieh, “Autopod: Unscheduled system updates with zero data loss,” in
ICAC ’05: Proceedings of the Second International Conference on Automatic
Computing, Washington, DC, USA, 2005, pp. 367–368, IEEE Computer Society.
31

[100] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh, “The design and
implementation of zap: a system for migrating computing environments,” in
OSDI ’02: Proceedings of the 5th symposium on Operating systems design and
implementation, New York, NY, USA, 2002, pp. 361–376, ACM. 31

[101] Andrew W. Appel, Compiling with Continuations, Cambridge University Press,
1992. 31

[102] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand, “Continua-
tions and coroutines,” in LFP ’84: Proceedings of the 1984 ACM Symposium
on LISP and functional programming, New York, NY, USA, 1984, pp. 293–298,
ACM. 31

104

[103] Bruce F. Duba, Robert Harper, and David Macqueen, “Typing first-class con-
tinuations in ml,” in Journal of Functional Programming, 1991, pp. 163–173.
31

[104] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean,
“Using Continuations to Implement Thread Management and Communication
in Operating Systems,” in In Proceedings of the 13th ACM Symposium on
Operating Systems Principles, 1991, pp. 122–136. 31

[105] Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yonezawa, “Portable Im-
plementation of Continuation Operators in Imperative Languages by Exception
Handling,” in Lecture Notes in Computer Science. 2001, pp. 217–233, Springer-
Verlag. 31, 32, 33

[106] Atul Adya and Jon Howell and Marvin Theimer and William J. Bolosky and
John R. Douceur, “Cooperative task management without manual stack man-
agement or, event-driven programming is not the opposite of threaded program-
ming,” in In Proceedings of the 2002 Usenix ATC, 2002. 31

[107] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek, “Events can make
sense,” in Proceedings of the 2007 USENIX Annual Technical Conference, June
2007. 31

[108] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser, “Dingo: Taming
device drivers,” in Proceedings of the 4th EuroSys Conference, Nuremberg,
Germany, Apr 2009. 31

[109] C. J. M. Booth and D. I. Bruce, “Stack-free process-oriented simulation,”
in PADS ’97: Proceedings of the eleventh workshop on Parallel and distributed
simulation, Washington, DC, USA, 1997, pp. 182–185, IEEE Computer Society.
32

[110] Edward Mascarenhas and Vernon Rego, “Ariadne: Architecture of a portable
threads system supporting mobile processes,” Software-Practice and Experi-
ence, vol. 26, 1996. 32

[111] Jean-Sébastien Légaré, “Providing Continuations in Java via Source Code
Transformations,” December 2006, Department of Computer Science, Univer-
sity of British Columbia. 32

105

[112] Don Stewart and Manuel M. T. Chakravarty, “Dynamic applications from
the ground up,” in Proceedings of the ACM SIGPLAN Workshop on Haskell.
September 2005, ACM Press. 32, 33

[113] Pierre Duquesne and Ciarán Bryce, “A language model for dynamic code up-
dating,” in HotSWUp ’08: Proceedings of the 1st International Workshop on
Hot Topics in Software Upgrades, New York, NY, USA, 2008, pp. 1–5, ACM.
32

[114] Jérémy Buisson and Fabien Dagnat, “Introspecting continuations in order to
update active code,” in HotSWUp ’08: Proceedings of the 1st International
Workshop on Hot Topics in Software Upgrades, New York, NY, USA, 2008, pp.
1–5, ACM. 32

[115] Ophir Frieder and Mark E. Segal, “On dynamically updating a computer pro-
gram: from concept to prototype,” Journal of Systems Software, vol. 14, no. 2,
pp. 111–128, 1991. 33

[116] Gı́sli Hjálmtýsson and Robert Gray, “Dynamic C++ classes: a lightweight
mechanism to update code in a running program,” in Proceedings of the 1998
USENIX Technical Conference, Berkeley, CA, USA, 1998, pp. 6–6, USENIX
Association. 33

[117] Theodore C. Goldstein and Alan D. Sloane, “The Object Binary Interface–C++
Objects for Evolvable Shared Class Libraries,” Tech. Rep., 1994. 33

[118] George C. Necula, Scott McPeak, S.P. Rahul, and Westley Weimer, “CIL: Inter-
mediate Language and Tools for Analysis and Transformation of C Programs,”
in Proceedings of Conference on Compilier Construction, 2002. 36

[119] Feras Karablieh, Compiler Assisted Application-Level Fault Tolerance in Dis-
tributed Systems, Ph.D. thesis, Arizona State University, May 2005. 45

[120] Kristis Makris and Rida Bazzi, “Immediate Multi-Threaded Dynamic Soft-
ware Updates Using Stack Reconstruction,” in Proceedings of the USENIX ’09
Annual Technical Conference, June 2009. 76

[121] Mark Weiser, “Program slicing,” in Proceedings of the 5th International Con-
ference on Software Engineering, March 1981, pp. 439–449. 93

106

[122] Frank Tip, “A survey of program slicing techniques,” Journal of Programming
Languages, vol. 3, pp. 121–189, 1995. 93

[123] Mariam Kamkar, “An overview and comparative classification of program slic-
ing techniques,” Journal of Systems and Software, vol. 31, no. 3, pp. 197–214,
1995. 93

[124] David Binkley and Keith Brian Gallagher, “Program slicing,” in Advances in
Computers, 1996, vol. 43, pp. 1–50. 93

[125] Wuu Yang, Susan Horwitz, and Thomas Reps, “A program integration algo-
rithm that accommodates semantics-preserving transformations,” SIGSOFT
Softw. Eng. Notes, vol. 15, no. 6, pp. 133–143, 1990. 93

[126] Wuu Yang, Susan Horwitz, and Thomas Reps, “Detecting program components
with equivalent behaviors,” Tech. Rep. CS-TR-1989-840, 1989. 93

[127] Wuu Yang, A new algorithm for semantics-based program integration, Ph.D.
thesis, University of Wisconsin, 1990, Supervisor-Thomas Reps and Supervisor-
Susan Horwitz. 93

[128] David Wendell Binkley, Multi-procedure program integration, Ph.D. thesis,
University of Wisconsin, Madison, WI, USA, 1991. 93

[129] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren, “The program depen-
dence graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, 1987. 93

[130] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence
graphs,” in PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation, New York, NY, USA, 1988,
pp. 35–46, ACM. 93

[131] Bogdan Korel and Janusz W. Laski, “Dynamic program slicing,” Inf. Process.
Lett., vol. 29, no. 3, pp. 155–163, 1988. 93

[132] Bogdan Korel and Jurgen Rilling, “Application of dynamic slicing in program
debugging,” in In Mariam Kamkar, editor, Proceedings of the 3rd International
Workshop on Automated Debugging (AADEBUG, 1997, pp. 43–57. 93

107

[133] Mark Harman and Sebastian Danicic, “Using Program Slicing to Simplify Test-
ing,” Journal of Software Testing, Verification and Reliability, vol. 5, no. 3, pp.
143–162, 1995. 93

[134] David Binkley, “The Application of Program Slicing to Regression Testing,” in
Information and Software Technology Special Issue on Program Slicing. 1999,
pp. 583–594, Elsevier. 93

[135] David Binkley, Multi-procedure program integration., Ph.D. thesis, Computer
Sciences Department, University of Wisconsin, Madison, August 1991. 93

[136] Raghavan Varadhan Komondoor, Automated duplicated code detection and pro-
cedure extraction, Ph.D. thesis, University of Wisconsin, 2003. 93

[137] K. B. Gallagher and J. R. Lyle, “Using program slicing in software mainte-
nance,” IEEE Transactions on Software Engineering, vol. 17, no. 8, pp. 751–
761, 1991. 93

	
	LIST OF TABLES
	LIST OF FIGURES
	Chapter INTRODUCTION
	Scope of this Dissertation
	Overview of this Dissertation

	Chapter THE DYNAMIC SOFTWARE UPDATE PROBLEM
	Dynamic Software Update
	Safety
	Type-Safety
	Transaction-Safety
	Representation Consistency
	Logical Representation Consistency
	Thread Safety

	The Need for Immediacy
	Update Mechanism
	Whole-Program Update
	Interrupt-Update-Restart
	Binary Instrumentation
	Function-Pointer Indirection
	Logical-Stage Extraction
	Data-Access Indirection

	Updateability
	Coverage
	Complexity
	Service Interruption
	User Input

	The Use of Update Mechanisms for DSU
	Interrupt-Update-Restart
	Binary Instrumentation
	Indirection and Extraction
	Whole-Program Update

	Conclusion

	Chapter RELATED WORK
	Extensible Design
	Binary Instrumentation
	Dynamic Update
	Replication
	Virtualization
	Checkpointing
	Continuation-Style Programming
	Conclusion

	Chapter DYNAMIC SOFTWARE UPDATE SYSTEM
	System Architecture
	Compiler
	Runtime Environment
	Patch Generator

	Stack Reconstruction
	Default State Mapping
	Default Datatype Mapping
	Default Stack Mapping
	Default Execution Continuation Mapping

	User Interface
	Datatype Transformers
	Stack Transformers
	Execution Continuation Transformers

	Multi-Threaded Updates
	Blocking System Calls
	Conclusion

	Chapter RUNTIME SAFETY CHECKING
	Dynamic Stack Tracing
	Stack Tracing in a Global Variable
	Stack Tracing Using the POSIX Threads API
	Stack Tracing Through Parameter Passing
	Stack Tracing and Stack Reconstruction

	Type-Safety
	Transaction-Safety
	Conclusion

	Chapter EVALUATION
	KissFFT
	Execution Time
	Sources of Overhead
	Memory Footprint
	Instrumentation Size

	The Very Secure FTP Daemon
	Source Code Evolution
	Experience
	Performance

	PostgreSQL Database Management System
	Source Code Evolution
	Experience
	Performance

	Conclusion

	Chapter CONCLUSION
	Future Work
	Program Slicing

	REFERENCES

